【題目】某校為了鼓勵學生熱心公益,服務(wù)社會,成立了“慈善義工社”.2017年12月,該!按壬屏x工社”為學生提供了4次參加公益活動的機會,學生可通過網(wǎng)路平臺報名參加活動.為了解學生實際參加這4次活動的情況,該校隨機抽取100名學生進行調(diào)查,數(shù)據(jù)統(tǒng)計如下表,其中“√”表示參加,“×”表示未參加.

根據(jù)表中數(shù)據(jù)估計,該校4000名學生中約有120名這4次活動均未參加.

(Ⅰ)求的值;

(Ⅱ)從該校4000名學生中任取一人,試估計其2017年12月恰參加了2次學校組織的公益活動的概率;

(Ⅲ)已知學生每次參加公益活動可獲得10個公益積分,任取該校一名學生,記該生2017年12月獲得的公益積分為,求隨機變量的分布列和數(shù)學期望.

【答案】(Ⅰ) (Ⅱ)(Ⅲ)21.6

【解析】試題分析:(Ⅰ)依題意,及學生人數(shù)和為100,即可求解的值;

(Ⅱ)將表格中參加了2次學校組織的公益活動的頻率作為概率估計即可;

(Ⅲ)可取0,10,20,30,40,分別計算概率得分布列,利用期望公式求解期望即可.

試題解析:

(Ⅰ)依題意,所以.

因為,

所以, .

(Ⅱ)設(shè)“從該校所有學生中任取一人,其2017年12月恰參加了2次學校組織的公益活動”為事件,

.

所以從該校所有學生中任取一人,其2017年12月恰參加了2次學校組織的公益活動的概率約為.

(Ⅲ)可取0,10,20,30,40.

;

;

.

所以隨機變量的分布列為:

所以.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),有三個不同的零點,(其中),則的值為( )

A. B. C. -1 D. 1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標值衡量,并依據(jù)質(zhì)量指標值劃分等級如下表:

從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測后得到如下的頻率分布直方圖:

(1)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品”的規(guī)定?

(2)在樣本中,按產(chǎn)品等級用分層抽樣的方法抽取8件,再從這8件產(chǎn)品中隨機抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;

(3)該企業(yè)為提高產(chǎn)品質(zhì)量,開展了“質(zhì)量提升月”活動,活動后再抽樣檢測,產(chǎn)品質(zhì)量指標值近似滿足,則“質(zhì)量提升月”活動后的質(zhì)量指標值的均值比活動前大約提升了多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱柱中,底面是正方形,且,

1)求證 ;

2)若動點在棱上,試確定點的位置,使得直線與平面所成角的正弦值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為了鼓勵學生熱心公益,服務(wù)社會,成立了“慈善義工社”.2017年12月,該!按壬屏x工社”為學生提供了4次參加公益活動的機會,學生可通過網(wǎng)路平臺報名參加活動.為了解學生實際參加這4次活動的情況,該校隨機抽取100名學生進行調(diào)查,數(shù)據(jù)統(tǒng)計如下表,其中“√”表示參加,“×”表示未參加.

(Ⅰ)從該校所有學生中任取一人,試估計其2017年12月恰參加了2次學校組織的公益活動的概率;

(Ⅱ)若在已抽取的100名學生中,2017年12月恰參加了1次活動的學生比4次活動均未參加的學生多17人,求的值;

(Ⅲ)若學生參加每次公益活動可獲得10個公益積分,試估計該校4000名學生中,2017年12月獲得的公益積分不少于30分的人數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓 的離心率為,上、下頂點分別為、,點在橢圓上,且異于點、,直線、與直線 分別交于點、,面積的最大值為.

1)求橢圓的標準方程;

2)求線段的長的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),(其中 為自然對數(shù)的底數(shù), ……).

(1)令,若對任意的恒成立,求實數(shù)的值;

(2)在(1)的條件下,設(shè)為整數(shù),且對于任意正整數(shù), ,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點為,上頂點為,直線與直線垂直,橢圓經(jīng)過點

(1)求橢圓的標準方程;

(2)過點作橢圓的兩條互相垂直的弦.若弦的中點分別為,證明:直線恒過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將圓上每個點的橫坐標變?yōu)樵瓉淼?/span>4倍,縱坐標變?yōu)樵瓉淼?/span>3倍,得曲線,以坐標原點為極點, 軸的非負軸分別交于半軸為極軸建立極坐標系,直線的極坐標方程為: 且直線在直角坐標系中與軸分別交于兩點.

1)寫出曲線的參數(shù)方程,直線的普通方程;

2)問在曲線上是否存在點,使得的面積,若存在,求出點的坐標,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案