練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知數(shù)列
為等差數(shù)列,且
.
(1)求數(shù)列
的通項公式;
(2)證明
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知正項數(shù)列
的前
項和為
,且
和
滿足:
.
(1)求
的通項公式;
(2)設
,求
的前
項和
;
(3)在(2)的條件下,對任意
,
都成立,求整數(shù)
的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知等差數(shù)列
的公差不為零,其前n項和為
,若
=70,且
成等比數(shù)列,
(1)求數(shù)列
的通項公式;
(2)設數(shù)列
的前n項和為
,求證:
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知等差數(shù)列{
}的前n項和為Sn,公差d≠0,且S
3=9,a
1,a
3,a
7成等比數(shù)列.
(1)求數(shù)列{
}的通項公式;
(2)設
=
,求數(shù)列{
}的前n項和
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知
成等差數(shù)列,
成等比數(shù)列,那么
的值為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知
是遞增的等差數(shù)列,
,
為其前
項和,若
成等比數(shù)列,則
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知各項均為正數(shù)的等比數(shù)列{a
n}的公比為q,且0<q<
.
(1)在數(shù)列{a
n}中是否存在三項,使其成等差數(shù)列?說明理由;
(2)若a
1=1,且對任意正整數(shù)k,a
k-(a
k+1+a
k+2)仍是該數(shù)列中的某一項.
(ⅰ)求公比q;
(ⅱ)若b
n=-loga
n+1(
+1),S
n=b
1+b
2+…+b
n,T
r=S
1+S
2+…+S
n,試用S
2011表示T
2011.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
等差數(shù)列
的前
項和為
,若
,
,則下列結論正確的是( )
查看答案和解析>>