【題目】已知{an}是各項(xiàng)為正數(shù)的等差數(shù)列,Sn為其前n項(xiàng)和,且4Sn=(an+1)2 . (Ⅰ)求a1 , a2的值及{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列 的最小值.
【答案】解:(Ⅰ)因?yàn)? ,
所以,當(dāng)n=1時(shí), ,解得a1=1,
當(dāng)n=2時(shí), ,解得a2=﹣1或a2=3,
因?yàn)閧an}是各項(xiàng)為正數(shù)的等差數(shù)列,所以a2=3,
所以{an}的公差d=a2﹣a1=2,
所以{an}的通項(xiàng)公式an=a1+(n﹣1)d=2n﹣1.
(Ⅱ)因?yàn)? ,所以 ,
所以 = = ,
所以,當(dāng)n=3或n=4時(shí), 取得最小值
【解析】(Ⅰ)由于4Sn=(an+1)2.令n=1,可求得a1,再令n=2,即可求得a2的值,從而可得正項(xiàng)等差數(shù)列{an}的公差,繼而可求得其通項(xiàng)公式;(Ⅱ)由(Ⅰ)知an=2n﹣1,于是可求得其前n項(xiàng)和Sn=n2,故 = ,從而可求得數(shù)列 的最小值.
【考點(diǎn)精析】掌握等差數(shù)列的通項(xiàng)公式(及其變式)和數(shù)列的通項(xiàng)公式是解答本題的根本,需要知道通項(xiàng)公式:或;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且 .
(1)求A的大;
(2)若 ,D是BC的中點(diǎn),求AD的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F為拋物線C:x2=2py(p>0)的焦點(diǎn),過F的直線l與C交于A,B兩點(diǎn),M為AB中點(diǎn),點(diǎn)M到x軸的距離為d,|AB|=2d+1.
(1)求p的值;
(2)過A,B分別作C的兩條切線l1 , l2 , l1∩l2=N.請(qǐng)選擇x,y軸中的一條,比較M,N到該軸的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在幾何體ABCDEF中,底面ABCD為矩形,EF∥CD,CD⊥EA,CD=2EF=2,ED= .M為棱FC上一點(diǎn),平面ADM與棱FB交于點(diǎn)N.
(Ⅰ)求證:ED⊥CD;
(Ⅱ)求證:AD∥MN;
(Ⅲ)若AD⊥ED,試問平面BCF是否可能與平面ADMN垂直?若能,求出 的值;若不能,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x2+ax﹣a)e1﹣x , 其中a∈R. (Ⅰ)求函數(shù)f'(x)的零點(diǎn)個(gè)數(shù);
(Ⅱ)證明:a≥0是函數(shù)f(x)存在最小值的充分而不必要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的三個(gè)內(nèi)角A、B、C所對(duì)的邊長(zhǎng)分別是a、b、c,且 ,若將函數(shù)f(x)=2sin(2x+B)的圖象向右平移 個(gè)單位長(zhǎng)度,得到函數(shù)g(x)的圖象,則g(x)的解析式為( )
A.
B.
C.2sin2x
D.2cos2x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin2x的圖象向左平移 個(gè)單位后,得到函數(shù)y=g(x)的圖象,下列關(guān)于y=g(x)的說法正確的是( )
A.圖象關(guān)于點(diǎn)(﹣ ,0)中心對(duì)稱
B.圖象關(guān)于x=﹣ 軸對(duì)稱
C.圖象關(guān)于點(diǎn)(﹣ ,0)中心對(duì)稱
D.圖象關(guān)于x=﹣ 軸對(duì)稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的首項(xiàng)為a1=2,且滿足a1+a2+…+an﹣an+1=﹣2.
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足 ,求數(shù)列{anbn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣1+aex .
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
(2)求f(x)的極值;
(3)當(dāng)a=1時(shí),曲線y=f(x)與直線y=kx﹣1沒有公共點(diǎn),求k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com