【題目】已知是拋物線: ()上一點, 是拋物線的焦點, 且.
(1)求拋物線的方程;
(2)已知 ,過 的直線 交拋物線 于 、 兩點,以 為圓心的圓 與直線 相切,試判斷圓 與直線 的位置關(guān)系,并證明你的結(jié)論.
【答案】(1)拋物線的方程為;(2)圓與直線相切.
【解析】試題分析:(1)由拋物線的方程,可得焦點坐標(biāo)與準(zhǔn)線方程,過作于點,
連接 ,利用等邊三角形,求得的值,即可得到拋物線的方程;
(2)當(dāng)直線 的斜率不存在時,可得圓 與直線 相切.
當(dāng)直線的斜率存在時,設(shè)方程為,代入拋物線的方程,求得,進(jìn)而得到直線、的方程,求得點到直線的距離,得到,即可判定直線與圓相切.
試題解析:
(1)拋物線 : ( )的準(zhǔn)線方程為 : ,
過 作 于點 ,連接 ,則 ,
∵ ,∴ 為等邊三角形,
∴ ,∴ .
∴拋物線 的方程為 .
(2)直線 的斜率不存在時, 為等腰三角形,且 .
∴圓 與直線 相切.
直線 的斜率存在時,設(shè)方程為 ,
代入拋物線方程,得 ,
設(shè) , ,則 .
直線 的方程為,即 ,
∴圓 的半徑 滿足
.
同理,直線 的方程為 ,
到直線 的距離 , .
∴ ,∴ ,∴圓 與直線 相切,
綜上所述,圓 與直線 相切.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是⊙O外一點,PA是切線,A為切點,割線PBC與⊙O相交于點B,C,PC=2PA,D為PC的中點,AD的延長線交⊙O于點E,證明:
(1)BE=EC;
(2)ADDE=2PB2 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)=lnx+ax2+(2a+1)x.
(1)討論的單調(diào)性;
(2)當(dāng)a﹤0時,證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城鎮(zhèn)社區(qū)為了豐富轄區(qū)內(nèi)廣大居民的業(yè)余文化生活,創(chuàng)建了社區(qū)“文化丹青”大型活動場所,配備了各種文化娛樂活動所需要的設(shè)施,讓廣大居民健康生活、積極向上,社區(qū)最近四年內(nèi)在“文化丹青”上的投資金額統(tǒng)計數(shù)據(jù)如表: (為了便于計算,把2015年簡記為5,其余以此類推)
年份(年) | 5 | 6 | 7 | 8 |
投資金額(萬元) | 15 | 17 | 21 | 27 |
(Ⅰ)利用所給數(shù)據(jù),求出投資金額與年份之間的回歸直線方程;
(Ⅱ) 預(yù)測該社區(qū)在2019年在“文化丹青”上的投資金額.
附:對于一組數(shù)據(jù), 其回歸直線的斜率和截距的最小二乘估計分別為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,如果輸出S=3,那么判斷框內(nèi)應(yīng)填入的條件是( )
A.k≤6
B.k≤7
C.k≤8
D.k≤9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以坐標(biāo)原點為極點, 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線:,點的極坐標(biāo)為,直線的極坐標(biāo)方程為,且點在直線上.
(1)求曲線的極坐標(biāo)方程和直線的直角坐標(biāo)方程;
(2)設(shè)向左平移個單位長度后得到,到的交點為, ,求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com