設(shè)a為實數(shù),函數(shù)f(x)=x3-ax2+(a2-1)x在(-∞,0)和(1,+∞)都是增函數(shù),求a的取值范圍.
分析:先對函數(shù)f(x)進行求導(dǎo)得到一個二次函數(shù),根據(jù)二次函數(shù)的圖象和性質(zhì)令f'(x)≥0在(-∞,0)和(1,+∞)成立,解出a的值.
解答:解:f'(x)=3x
2-2ax+(a
2-1),其判別式△=4a
2-12a
2+12=12-8a
2.
(ⅰ)若△=12-8a
2=0,即a=±
,當(dāng)x∈(-∞,
),或x∈(
,+∞)時,
f'(x)>0,f(x)在(-∞,+∞)為增函數(shù).
所以a=±
.
(ⅱ)若△=12-8a
2<0,恒有f'(x)>0,f(x)在(-∞,+∞)為增函數(shù),
所以a
2>
,
即a∈(-∞,-
)∪(
,+∞)
(ⅲ)若△12-8a
2>0,即-
<a<
,
令f'(x)=0,
解得x
1=
,x
2=
.
當(dāng)x∈(-∞,x
1),或x∈(x
2,+∞)時,f'(x)>0,f(x)為增函數(shù);
當(dāng)x∈(x
1,x
2)時,f'(x)<0,f(x)為減函數(shù).依題意x
1≥0且x
2≤1.
由x
1≥0得a≥
,解得1≤a<
由x
2≤1得
≤3-a,解得-
<a<
,從而a∈[1,
)
綜上,a的取值范圍為(-∞,-
]∪[
,+∞)∪[1,
),
即a∈(-∞,-
]∪[1,+∞).
點評:本題主要考查函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的正負(fù)情況之間的關(guān)系,即當(dāng)導(dǎo)數(shù)大于0時原函數(shù)單調(diào)遞增,當(dāng)導(dǎo)數(shù)小于0時原函數(shù)單調(diào)遞減.