【題目】從裝有個(gè)紅球和個(gè)黒球的口袋內(nèi)任取個(gè)球,則互為對(duì)立事件是( )

A. 至少有一個(gè)黒球與都是黒球B. 至少有一個(gè)黒球與都是紅球

C. 至少有一個(gè)黒球與至少有個(gè)紅球D. 恰有個(gè)黒球與恰有個(gè)黒球

【答案】B

【解析】

列舉每個(gè)事件所包含的基本事件,結(jié)合互斥事件和對(duì)立事件的定義,依次驗(yàn)證即可.

對(duì)于A:事件:至少有一個(gè)黑球與事件:都是黑球可以同時(shí)發(fā)生,如:一個(gè)紅球一個(gè)黑球,∴A不正確;

對(duì)于B:事件:至少有一個(gè)黑球與事件:都是紅球,這兩個(gè)事件是對(duì)立事件,∴B正確

對(duì)于C:事件:至少有一個(gè)黑球與事件:至少有1個(gè)紅球可以同時(shí)發(fā)生,如:一個(gè)紅球一個(gè)黑球,∴C不正確

對(duì)于D:事件:恰有一個(gè)黑球恰有2個(gè)黑球不能同時(shí)發(fā)生,∴這兩個(gè)事件是互斥事件,

又由從裝有2個(gè)紅球和2個(gè)黑球的口袋內(nèi)任取2個(gè)球,得到所有事件為恰有1個(gè)黑球恰有2個(gè)黑球以及恰有2個(gè)紅球三種情況,故這兩個(gè)事件是不是對(duì)立事件,∴D不正確

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】汽車(chē)的燃油效率是指汽車(chē)每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車(chē)在不同速度下的燃油效率情況. 下列敘述中正確的是( )

A. 消耗1升汽油,乙車(chē)最多可行駛5千米

B. 以相同速度行駛相同路程,三輛車(chē)中,甲車(chē)消耗汽油最多

C. 甲車(chē)以80千米/小時(shí)的速度行駛1小時(shí),消耗10升汽油

D. 某城市機(jī)動(dòng)車(chē)最高限速80千米/小時(shí). 相同條件下,在該市用丙車(chē)比用乙車(chē)更省油

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若對(duì)恒成立,求的取值范圍;

(2)證明:不等式對(duì)于正整數(shù)恒成立,其中為自然對(duì)數(shù)的底數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),函數(shù)恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的值;

2)當(dāng)時(shí),

若對(duì)于任意,恒有,求的取值范圍;

,求函數(shù)在區(qū)間上的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿(mǎn)分12分)

某企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1;B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤(rùn)和投資單位:萬(wàn)元)

(1)分別將A、B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù)關(guān)系式;

(2)已知該企業(yè)已籌集到18萬(wàn)元資金,并將全部投入A,B兩種產(chǎn)品的生產(chǎn).

若平均投入生產(chǎn)兩種產(chǎn)品,可獲得多少利潤(rùn)?

問(wèn):如果你是廠(chǎng)長(zhǎng),怎樣分配這18萬(wàn)元投資,才能使該企業(yè)獲得最大利潤(rùn)?其最大利潤(rùn)約為多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),g(x)=-x2+2bx-4,若對(duì)任意的x1∈(0,2),任意的x2∈[1,2],不等式f(x1)≥g(x2)恒成立,則實(shí)數(shù)b的取值范圍是(  )

A. B. (1,+∞)

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓(ab>0)的一個(gè)焦點(diǎn)與拋物線(xiàn)y2=4x的焦點(diǎn)F重合,且橢圓短軸的兩個(gè)端點(diǎn)與點(diǎn)F構(gòu)成正三角形.

(1)求橢圓的方程;

(2)若過(guò)點(diǎn)(1,0)的直線(xiàn)l與橢圓交于不同的兩點(diǎn)P,Q,試問(wèn)在x軸上是否存在定點(diǎn)E(m,0),使恒為定值?若存在,求出E的坐標(biāo),并求出這個(gè)定值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】黨的十八大以來(lái),我國(guó)精準(zhǔn)扶貧已經(jīng)實(shí)施了六年,我國(guó)貧困人口從2012年的9899萬(wàn)人,減少到2018年的1660萬(wàn)人,2019年將努力實(shí)現(xiàn)減少貧困人口1000萬(wàn)人以上的目標(biāo),力爭(zhēng)2020年在現(xiàn)行標(biāo)準(zhǔn)下,農(nóng)村貧困人口全部脫貧,貧困縣全部脫貧摘帽.某市為深入分析該市當(dāng)前扶貧領(lǐng)域存在的突出問(wèn)題,市扶貧辦近三年來(lái),每半年對(duì)貧困戶(hù)(用表示,單位:萬(wàn)戶(hù))進(jìn)行取樣,統(tǒng)計(jì)結(jié)果如圖所示,從20166月底到20196月底的共進(jìn)行了七次統(tǒng)計(jì),統(tǒng)計(jì)時(shí)間用序號(hào)表示,例如:201612月底(時(shí)間序號(hào)為2)貧困戶(hù)為5.2萬(wàn)戶(hù).

(1)求關(guān)于的線(xiàn)性回歸方程,并預(yù)測(cè)到202012月底,該市能否實(shí)現(xiàn)貧困戶(hù)全部脫貧;

(2)為盡快打贏脫貧攻堅(jiān)戰(zhàn),該市扶貧辦在20196月底時(shí),對(duì)全市貧困戶(hù)隨機(jī)抽取了100戶(hù)貧困戶(hù),對(duì)每個(gè)家庭最主要經(jīng)濟(jì)收入來(lái)源進(jìn)行抽樣調(diào)查,統(tǒng)計(jì)結(jié)果如圖.并決定據(jù)此選派一批農(nóng)業(yè)技術(shù)人員對(duì)全市所有貧困戶(hù)中,家庭最主要經(jīng)濟(jì)收入來(lái)源為養(yǎng)殖收入和種植收入的貧困戶(hù)進(jìn)行對(duì)口幫扶,每一名農(nóng)業(yè)技術(shù)人員對(duì)口幫扶貧困戶(hù)90戶(hù),則該市應(yīng)分別安排多少農(nóng)業(yè)技術(shù)人員對(duì)家庭最主要經(jīng)濟(jì)收入來(lái)源為養(yǎng)殖收入和種植收入的貧困戶(hù)進(jìn)行對(duì)口幫扶?

附:回歸直線(xiàn)的斜率和截距的最小二乘法估計(jì)公式分別為:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),函數(shù)是區(qū)間上的減函數(shù).

(1)求的最大值;

(2)若上恒成立,求的取值范圍;

(3)討論關(guān)于的方程的根的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案