【題目】已知函數(shù)

(1)當(dāng)時(shí),求不等式的解集;

(2)對(duì)任意,若恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1)(2)

【解析】試題分析:(1)通過因式分解,利用一元二次不等式的解法即可得出;(2)對(duì)任意 恒成立, ,再利用二次函數(shù)的單調(diào)性即可得出.

試題解析:(1)當(dāng)時(shí),由不等式,得

不等式的解集為

(2)對(duì)任意, 恒成立, ,不等式恒成立,

恒成立.       

的最大值為

當(dāng)時(shí),恒成立.

【方法點(diǎn)晴】本題主要考查一元二次不等式的解法以及不等式恒成立問題,屬于難題.不等式恒成立問題常見方法:① 分離參數(shù)恒成立(可)或恒成立(即可);② 數(shù)形結(jié)合(圖象在 上方即可);③ 討論最值恒成立;④ 討論參數(shù).本題是利用方法 ① 求得的最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓.

(1)求證對(duì)任意實(shí)數(shù),該圓恒過一定點(diǎn);

(2)若該圓與圓切,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,右焦點(diǎn)到右頂點(diǎn)的距離為

1)求橢圓的標(biāo)準(zhǔn)方程;

2)是否存在與橢圓交于兩點(diǎn)的直線,使得成立?若存在,求出實(shí)數(shù)的取值范圍,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有20名學(xué)生參加某次考試,成績(jī)(單位:分)的頻率分布直方圖如圖所示:

(Ⅰ)求頻率分布直方圖中的值;

(Ⅱ)分別求出成績(jī)落在中的學(xué)生人數(shù);

(Ⅲ)從成績(jī)?cè)?/span>的學(xué)生中任選2人,求所選學(xué)生的成績(jī)都落在中的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐P-ABCD中,底面ABCD是棱長(zhǎng)為2的正方形,側(cè)面PAD為正三角形,且面PAD⊥面ABCD,E、F分別為棱AB、PC的中點(diǎn).

(1)求證:EF∥平面PAD;

(2)求三棱錐B-EFC的體積;

(3)求二面角P-EC-D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)袋中裝有5個(gè)形狀大小完全相同的球,其中有2個(gè)紅球,3個(gè)白球

1從袋中隨機(jī)取兩個(gè)球,求取出的兩個(gè)球顏色不同的概率;

2從袋中隨機(jī)取一個(gè)球,將球放回袋中,然后再?gòu)拇须S機(jī)取一個(gè)球,求兩次取出的球中至少有一個(gè)紅球的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地為制定初中七、八、九年級(jí)學(xué)生校服的生產(chǎn)計(jì)劃,有關(guān)部門準(zhǔn)備對(duì)180名初中男生的身高作調(diào)查.

(1)為了達(dá)到估計(jì)該地初中三個(gè)年級(jí)男生身高分布的目的,你認(rèn)為采用怎樣的調(diào)查方案比較合理?

(2)表中的數(shù)據(jù)是使用了某種調(diào)查方法獲得的:七、八、九年級(jí)180名男生身高:

注:表中每組可含最低值,不含最高值.

根據(jù)表中的數(shù)據(jù),請(qǐng)你給校服生產(chǎn)廠家指定一份生產(chǎn)計(jì)劃思路.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,三內(nèi)角A,B,C的對(duì)邊分別為a,b,c.

(1)若,求;

(2)若,且為鈍角,證明: ,并求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸為正半軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為,直線的參數(shù)方程為(t為參數(shù)).

(1)求圓的直角坐標(biāo)方程;

(2)求直線分圓所得的兩弧程度之比.

查看答案和解析>>

同步練習(xí)冊(cè)答案