已知:,).

(1)求的單調(diào)遞增區(qū)間;

(2)若時,的最小值為5,求的值.

 

【答案】

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(1+x)n(x>-1,n∈N*)在點(0,1)處的切線L為y=g(x)
(Ⅰ)求切線L并判斷函數(shù)f(x)在x∈(-1,+∞)上的單調(diào)性;
(Ⅱ)求證:f(x)≥g(x)對任意的x∈(-1,+∞)都成立;
(Ⅲ)求證:已知m,n∈N*,Sm=1m+2m+…+nm,求證:nm+1<(m+1)Sm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線f(x)=xcosx+1在點(
π
2
,1)處的切線與直線ax-y+1=0垂直,則實數(shù)a=
2
π
2
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=
5
2-i

(1)求z的實部與虛部;
(2)若z2+m
.
z
+n=1-i
m,n∈R, 
.
z
是z的共軛復(fù)數(shù)),求m和n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•遼寧)已知函數(shù)f(x)=ln(
1+9x2
-3x)+1,則f(lg2)+f(lg
1
2
)
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(1+x)ln2(x+1)-x2,g(x)=
1
ln(x+1)
-
1
x

(Ⅰ)判定f(x)在(0,1]上的單調(diào)性;
(Ⅱ)求g(x)在(0,1]上的最小值;
(Ⅲ)若?n∈N*,(n+a)ln(1+
1
n
)≤1,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案