【題目】已知函數(shù),其中
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若在上存在,使得成立,求的取值范圍.
【答案】(1)見解析(2)
【解析】試題分析:(1)函數(shù)的單調(diào)區(qū)間與導(dǎo)數(shù)的符號相關(guān),而函數(shù)的導(dǎo)數(shù)為,故可以根據(jù)的符號討論導(dǎo)數(shù)的符號,從而得到函數(shù)的單調(diào)區(qū)間.(2)若不等式 在 上有解,那么在上, .但在上的單調(diào)性不確定,故需分 三種情況討論.
解析:(1),
①當(dāng)時,在上, 在上單調(diào)遞增;
②當(dāng)時,在上;在上;所以在上單調(diào)遞減,在上單調(diào)遞增.
綜上所述,當(dāng)時, 的單調(diào)遞增區(qū)間為,當(dāng)時, 的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.
(2)若在上存在,使得成立,則在上的最小值小于.
①當(dāng),即時,由(1)可知在上單調(diào)遞增, 在上的最小值為,由,可得,
②當(dāng),即時,由(1)可知在上單調(diào)遞減, 在上的最小值為,由,可得 ;
③當(dāng),即時,由(1)可知在上單調(diào)遞減,在上單調(diào)遞增, 在上的最小值為,因?yàn)?/span>,所以,即,即,不滿足題意,舍去.
綜上所述,實(shí)數(shù)的取值范圍為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】時值金秋十月,正是秋高氣爽,陽光明媚的美好時刻。復(fù)興中學(xué)一年一度的校運(yùn)會正在密鑼緊鼓地籌備中,同學(xué)們也在熱切地期盼著,都想為校運(yùn)會出一份力。小智同學(xué)則通過對學(xué)校有關(guān)部門的走訪,隨機(jī)地統(tǒng)計(jì)了過去許多年中的五個年份的校運(yùn)會“參與”人數(shù)及相關(guān)數(shù)據(jù),并進(jìn)行分析,希望能為運(yùn)動會組織者科學(xué)地安排提供參考。
附:①過去許多年來學(xué)校的學(xué)生數(shù)基本上穩(wěn)定在3500人左右;②“參與”人數(shù)是指運(yùn)動員和志愿者,其余同學(xué)均為“啦啦隊(duì)員”,不計(jì)入其中;③用數(shù)字1、2、3、4、5表示小智同學(xué)統(tǒng)計(jì)的五個年份的年份數(shù),今年的年份數(shù)是6;
統(tǒng)計(jì)表(一)
年份數(shù)x | 1 | 2 | 3 | 4 | 5 |
“參與”人數(shù)(y千人) | 1.9 | 2.3 | 2.0 | 2.5 | 2.8 |
統(tǒng)計(jì)表(二)
高一(3)(4)班參加羽毛球比賽的情況:
男生 | 女生 | 小計(jì) | |
參加(人數(shù)) | 26 | b | 50 |
不參加(人數(shù)) | c | 20 | |
小計(jì) | 44 | 100 |
(1)請你與小智同學(xué)一起根據(jù)統(tǒng)計(jì)表(一)所給的數(shù)據(jù),求出“參與”人數(shù)y關(guān)于年份數(shù)x的線性回歸方程,并預(yù)估今年的校運(yùn)會的“參與”人數(shù);
(2)學(xué)校命名“參與”人數(shù)占總?cè)藬?shù)的百分之八十及以上的年份為“體育活躍年”.如果該校每屆校運(yùn)會的“參與”人數(shù)是互不影響的,且假定小智同學(xué)對今年校運(yùn)會的“參與”人數(shù)的預(yù)估是正確的,并以這6個年份中的“體育活躍年”所占的比例作為任意一年是“體育活躍年”的概率,F(xiàn)從過去許多年中隨機(jī)抽取9年來研究,記這9年中“體活躍年”的個數(shù)為隨機(jī)變量,試求隨機(jī)變量的分布列、期望和方差;
(3)根據(jù)統(tǒng)計(jì)表(二),請問:你能否有超過60%的把握認(rèn)為“羽毛球運(yùn)動”與“性別”有關(guān)?
參考公式和數(shù)據(jù)一:,,,
參考公式二:,其中.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 | |
0.455 | 0.708 | 1.323 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD中,以D為原點(diǎn)建立空間直角坐標(biāo)系,E為B的中點(diǎn),F(xiàn)為的中點(diǎn),則下列向量中,能作為平面AEF的法向量的是( )
A. (1,-2,4) B. (-4,1,-2)
C. (2,-2,1) D. (1,2,-2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,試判斷函數(shù)的極值情況,并說明理由;
(2)若有兩個極值點(diǎn),.
①求實(shí)數(shù)的取值范圍;
②證明:.注:是自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從參加某次知識競賽的同學(xué)中,選取60名同學(xué)將其成績(百分制,均為整數(shù))分成, , , , , 六組后,得到部分頻率分布直方圖(如圖),觀察圖形中的信息,回答下列問題:
(1)求分?jǐn)?shù)內(nèi)的頻率,并補(bǔ)全這個頻率分布直方圖;
(2)從頻率分布直方圖中,估計(jì)本次考試成績的中位數(shù);
(3)若從第1組和第6組兩組學(xué)生中,隨機(jī)抽取2人,求所抽取2人成績之差的絕對值大于10的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓,是橢圓與軸的兩個交點(diǎn),為橢圓C的上頂點(diǎn),設(shè)直線的斜率為,直線的斜率為,.
(1)求橢圓的離心率;
(2)設(shè)直線與軸交于點(diǎn),交橢圓于、兩點(diǎn),且滿足,當(dāng)的面積最大時,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著中國經(jīng)濟(jì)的騰飛,互聯(lián)網(wǎng)的快速發(fā)展,網(wǎng)絡(luò)購物需求量不斷增大.某物流公司為擴(kuò)大經(jīng)營,今年年初用192萬元購進(jìn)一批小型貨車,公司第一年需要付保險費(fèi)等各種費(fèi)用共計(jì)12萬元,從第二年起包括保險費(fèi)、維修費(fèi)等在內(nèi)的所需費(fèi)用比上一年增加6萬元,且該批小型貨車每年給公司帶來69萬元的收入.
(1)若該批小型貨車購買n年后盈利,求n的范圍;
(2)該批小型貨車購買幾年后的年平均利潤最大,最大值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的多面體中,,且,四邊形為正方形,為等邊三角形,平面平面.
(1)求異面直線與所成角的余弦值;
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小賣部為了研究氣溫對熱飲銷售的影響,經(jīng)過統(tǒng)計(jì),得到一個賣出的熱飲杯數(shù)與當(dāng)天氣溫(平均溫度)的對比表:
0 | 1 | 3 | 4 | |
140 | 136 | 129 | 125 |
(1)請?jiān)趫D中畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(3)如果某天的氣溫是,試根據(jù)(2)求出的線性回歸方程預(yù)測這天大約可以賣出的熱飲杯數(shù).
參考公式:最小二乘法求線性回歸方程系數(shù)公式:,.
參考數(shù)據(jù):.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com