【題目】用反證法證明命題:“已知a,b為實數(shù),則方程x2+ax+b=0至少有一個實根”時,要做的假設(shè)是( )
A.方程x2+ax+b=0沒有實根
B.方程x2+ax+b=0至多有一個實根
C.方程x2+ax+b=0至多有兩個實根
D.方程x2+ax+b=0恰好有兩個實根

【答案】A
【解析】解:反證法證明問題時,反設(shè)實際是命題的否定,

∴用反證法證明命題“設(shè)a,b為實數(shù),則方程x2+ax+b=0至少有一個實根”時,要做的假設(shè)是:方程x2+ax+b=0沒有實根.

所以答案是:A.

【考點精析】通過靈活運用反證法與放縮法,掌握常見不等式的放縮方法:①舍去或加上一些項②將分子或分母放大(縮小)即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】pq成立的一個必要條件是r,則下列推理:①pqr;②pr;③¬rq;④(¬p)∧(¬qr.其中正確的個數(shù)為(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】總體由編號為01,02,19,2020個個體組成.利用下面的隨機數(shù)表選取5個個體,選取方法是從隨機數(shù)表第1行的第5列和第6列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為______.

7816

6572

0802

6314

0702

4369

9728

0198

3204

9234

4935

8200

3623

4869

6938

7481

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題“對任意x∈R,都有x2﹣2x+4≤0”的否定為(
A.對任意x∈R,都有x2﹣2x+4≥0
B.對任意x∈R,都有x2﹣2x+4≤0
C.存在x0∈R,使得x02﹣2x0+4>0
D.存在x0∈R,使x02﹣2x0+4≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2×2列聯(lián)表中a,b的值分別為(

Y1

Y2

總計

X1

a

21

73

X2

2

25

27

總計

b

46


A.94,96
B.52,50
C.52,54
D.54,52

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=3x+2x﹣3的零點所在的區(qū)間是( )
A.(﹣2,﹣1)
B.(﹣1,0)
C.(0,1)
D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)=ax2+1(x∈R)的圖象過點A(﹣1,3).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)證明f(x)在(﹣∞,0)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將4本完全相同的小說,1本詩集全部分給4名同學(xué),每名同學(xué)至少1本書,則不同分法有(
A.24種
B.28種
C.32種
D.16種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】知函數(shù)f(x)是R上的偶函數(shù),g(x)是R上的奇函數(shù),且g(x)=f(x﹣1),若f(﹣2)=2,則f(2018)=

查看答案和解析>>

同步練習(xí)冊答案