當(dāng)為正整數(shù)時(shí),定義函數(shù)表示的最大奇因數(shù).如,,….記.則 .(用來表示)
【解析】
試題分析:由N(x)的性質(zhì)可得知,當(dāng)x是奇數(shù)時(shí),x的最大奇數(shù)因子明顯是它本身.因此N(x)=x,因此,我們就可將進(jìn)行分解,分別算出奇數(shù)項(xiàng)的和與偶數(shù)項(xiàng)的和進(jìn)而相加,即,
所以=N(1)+N(3)+…+N()=1+3+…+= 。
當(dāng)x是偶數(shù)時(shí),且x∈[)
①當(dāng)k=1時(shí),x∈[2,4)該區(qū)間包含的偶數(shù)只有2,而N(2)=1所以該區(qū)間所有的偶數(shù)的最大奇因數(shù)之和為;
②當(dāng)k=2時(shí),x∈[4,8),該區(qū)間包含的偶數(shù)為4,6,所以該區(qū)間所有的最大奇因數(shù)偶數(shù)之和為
③當(dāng)k=3時(shí),x∈[8,16),該區(qū)間包含的偶數(shù)為8,10.,12,14,則該區(qū)間所有偶數(shù)的最大奇因數(shù)之和為,因此我們可以用數(shù)學(xué)歸納法得出當(dāng)x∈[)該區(qū)間所有偶數(shù)的最大奇因數(shù)和
∴對k從1到n-1求和得
,
綜上知:。
考點(diǎn):數(shù)列的綜合應(yīng)用。
點(diǎn)評:本題主要考查了數(shù)列的求和問題.考查了學(xué)生通過已知條件分析問題和解決問題的能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com