【題目】下列命題為真命題的個(gè)數(shù)是( )(其中為無(wú)理數(shù))

;②;③.

A.0B.1C.2D.3

【答案】C

【解析】

對(duì)于①中,根據(jù)指數(shù)冪的運(yùn)算性質(zhì)和不等式的性質(zhì),可判定值正確的;對(duì)于②中,構(gòu)造新函數(shù),利用導(dǎo)數(shù)得到函數(shù)為單調(diào)遞增函數(shù),進(jìn)而得到,即可判定是錯(cuò)誤的;對(duì)于③中,構(gòu)造新函數(shù),利用導(dǎo)數(shù)求得函數(shù)的最大值為,進(jìn)而得到,即可判定是正確的.

由題意,對(duì)于①中,由,可得,根據(jù)不等式的性質(zhì),可得成立,所以是正確的;

對(duì)于②中,設(shè)函數(shù),則,所以函數(shù)為單調(diào)遞增函數(shù),

因?yàn)?/span>,則

又由,所以,即,所以②不正確;

對(duì)于③中,設(shè)函數(shù),則,

當(dāng)時(shí),,函數(shù)單調(diào)遞增,

當(dāng)時(shí),,函數(shù)單調(diào)遞減,

所以當(dāng)時(shí),函數(shù)取得最大值,最大值為

所以,即,即,所以是正確的.

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線Ey22pxp0),焦點(diǎn)F到準(zhǔn)線的距離為3,拋物線E上的兩個(gè)動(dòng)點(diǎn)Ax1,y1)和Bx2y2),其中x1x2x1+x24.線段AB的垂直平分線與x軸交于點(diǎn) C

1)求拋物線E的方程;

2)求ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】古希臘雅典學(xué)派算學(xué)家歐道克薩斯提出了“黃金分割”的理論,利用尺規(guī)作圖可畫出己知線段的黃金分割點(diǎn),具體方法如下:(l)取線段AB=2,過(guò)點(diǎn)B作AB的垂線,并用圓規(guī)在垂線上截取BC=AB,連接AC;(2)以C為圓心,BC為半徑畫弧,交AC于點(diǎn)D;(3)以A為圓心,以AD為半徑畫弧,交AB于點(diǎn)E.則點(diǎn)E即為線段AB的黃金分割點(diǎn).若在線段AB上隨機(jī)取一點(diǎn)F,則使得BE≤AF≤AE的概率約為( 。▍⒖紨(shù)據(jù):2.236)

A. 0.236B. 0.382C. 0.472D. 0.618

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某小區(qū)內(nèi)有兩條互相垂直的道路,平面直角坐標(biāo)系的第一象限有一塊空地,其邊界是函數(shù)的圖象,前一段曲線是函數(shù)圖象的一部分,后一段是一條線段.測(cè)得的距離為8米,到的距離為16米,長(zhǎng)為20米.

(1)求函數(shù)的解析式;

(2)現(xiàn)要在此地建一個(gè)社區(qū)活動(dòng)中心,平面圖為梯形(其中,為兩底邊),問(wèn):梯形的高為多少米時(shí),該社區(qū)活動(dòng)中心的占地面積最大,并求出最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某網(wǎng)店經(jīng)銷某商品,為了解該商品的月銷量y(單位:千件)與售價(jià)x(單位:元/件)之間的關(guān)系,收集5組數(shù)據(jù)進(jìn)行了初步處理,得到如下數(shù)表:

x

5

6

7

8

9

y

8

6

4.5

3.5

3

1)統(tǒng)計(jì)學(xué)中用相關(guān)系數(shù)r來(lái)衡量?jī)蓚(gè)變量之間線性相關(guān)關(guān)系的強(qiáng)弱,若,則認(rèn)為相關(guān)性很強(qiáng);若,則認(rèn)為相關(guān)性一般;若,則認(rèn)為相關(guān)性較弱.請(qǐng)根據(jù)上表數(shù)據(jù)計(jì)算yx之間相關(guān)系數(shù)r,并說(shuō)明yx之間的線性相關(guān)關(guān)系的強(qiáng)弱(精確到0.01);

2)求y關(guān)于x的線性回歸方程;

3)根據(jù)(2)中的線性回歸方程,應(yīng)將售價(jià)x定為多少,可獲取最大的月銷售金額?(月銷售金額=月銷售量×當(dāng)月售價(jià))

附注:

參考數(shù)據(jù):,

參考公式:相關(guān)系數(shù)

線性回歸方程,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若在定義域上不單調(diào),求的取值范圍;

(2)設(shè)分別是的極大值和極小值,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】德國(guó)著名數(shù)學(xué)家狄利克雷(Dirichlet,1805~1859)在數(shù)學(xué)領(lǐng)域成就顯著.19世紀(jì),狄利克雷定義了一個(gè)“奇怪的函數(shù)” 其中R為實(shí)數(shù)集,Q為有理數(shù)集.則關(guān)于函數(shù)有如下四個(gè)命題,正確的為( )

A.函數(shù)是偶函數(shù)

B.,,恒成立

C.任取一個(gè)不為零的有理數(shù)T,對(duì)任意的恒成立

D.不存在三個(gè)點(diǎn),,,使得為等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】李克強(qiáng)總理在2018年政府工作報(bào)告指出,要加快建設(shè)創(chuàng)新型國(guó)家,把握世界新一輪科技革命和產(chǎn)業(yè)變革大勢(shì),深入實(shí)施創(chuàng)新驅(qū)動(dòng)發(fā)展戰(zhàn)略,不斷增強(qiáng)經(jīng)濟(jì)創(chuàng)新力和競(jìng)爭(zhēng)力.某手機(jī)生產(chǎn)企業(yè)積極響應(yīng)政府號(hào)召,大力研發(fā)新產(chǎn)品,爭(zhēng)創(chuàng)世界名牌.為了對(duì)研發(fā)的一批最新款手機(jī)進(jìn)行合理定價(jià),將該款手機(jī)按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù),如表所示:

單價(jià)(千元)

銷量(百件)

已知.

(1)若變量具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(百件)關(guān)于試銷單價(jià)(千元)的線性回歸方程

(2)用(1)中所求的線性回歸方程得到與對(duì)應(yīng)的產(chǎn)品銷量的估計(jì)值.當(dāng)銷售數(shù)據(jù)對(duì)應(yīng)的殘差的絕對(duì)值時(shí),則將銷售數(shù)據(jù)稱為一個(gè)“好數(shù)據(jù)”.現(xiàn)從個(gè)銷售數(shù)據(jù)中任取個(gè)子,求“好數(shù)據(jù)”個(gè)數(shù)的分布列和數(shù)學(xué)期望.

(參考公式:線性回歸方程中的估計(jì)值分別為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線.點(diǎn)A,拋物線上的點(diǎn)P(x,y),過(guò)點(diǎn)B作直線AP的垂線,垂足為Q

(I)求直線AP斜率的取值范圍;

(II)求的最大值

查看答案和解析>>

同步練習(xí)冊(cè)答案