精英家教網 > 高中數學 > 題目詳情
(1)、已知函數f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函數f(x)=2cos2x-2
3
sinxcosx
的圖象按向量
m
=(
π
6
,-1)
平移后,得到一個函數g(x)的圖象,求g(x)的解析式.
(1)由已知條件,得sinα=
1-cos2α
=
1-(
3
5
)
2
=
4
5
.…(2分)
所以f(α)=
1+
2
cos(2α-
π
4
)
sin(α+
π
2
)
=
1+
2
(cos2αcos
π
4
+sin2αsin
π
4
)
cosα
…(6分)
=
1+cos2α+sin2α
cosα
=
2cos2α+2sinαcosα
cosα
…(9分)
=2(cosα+sinα)=
14
5
.…(10分)
(2)函數f(x)=2cos2x-2
3
sinxcosx
=cos2x-
3
sin2x+1=2cos(2x+
π
3
)+1;
函數圖象按向量
m
=(
π
6
,-1)
平移后,得到一個函數g(x)=2cos[2(x-
π
6
)+
π
3
]-1+1=2cos2x的圖象,
故函數的解析式為:g(x)=2cos2x.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(1)、已知函數f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函數f(x)=2cos2x-2
3
sinxcosx
的圖象按向量
m
=(
π
6
,-1)
平移后,得到一個函數g(x)的圖象,求g(x)的解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列命題,其中正確命題的個數為( 。
①在區(qū)間(0,+∞)上,函數y=x-1,y=x 
1
2
,y=(x-1)2,y=x3中有三個是增函數;
②命題p:?x∈R,sinx≤1.則¬p:?x0∈R,使sinx0>1;
③若函數f(x)是偶函數,則f(x-1)的圖象關于直線x=1對稱;
④已知函數f(x)=
3x-2,      x≤2
log3(x-1),x>2
則方程f(x)=
1
2
有2個實數根.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•淄博一模)下列結論:
①直線a,b為異面直線的充要條件是直線a,b不相交;
②函數f(x)=lgx-
1x
的零點所在的區(qū)間是(1,10);
③已知隨機變量X服從正態(tài)分布N(0,1),且P(-1≤X≤1)=m,則P(X<-1)=1-m;
④已知函數f(x)=2x+2-x,則y=f(x-2)的圖象關于直線x=2對稱.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•臺州二模)設[x]表示不超過x的最大整數(如[2]=2,[1.3]=1),已知函數f(x)=
[x+
1
2
]
[x]+
1
2
(x≥0),當f(x)<1時,實數x的取值范圍是
{x|k≤x<k+
1
2
,k∈N}
{x|k≤x<k+
1
2
,k∈N}

查看答案和解析>>

同步練習冊答案