【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,若A= ,b(1﹣cosC)=ccosA,b=2,則△ABC的面積為( )
A.
B.2
C.
D.或2
【答案】D
【解析】解:∵在△ABC中,b(1﹣cosC)=ccosA,可得:b=ccosA+bcosC,
∴sinB=sinCcosA+sinBcosC=sin(A+C)=sinAcosC+cosAsinC,可得:sinBcosC=sinAcosC,
∴cosC=0,或sinB=sinA,
∵A= ,b=2,
∴當(dāng)cosC=0時,C= ,a= =2 ,S△ABC= ab= =2 ,
當(dāng)sinB=sinA時,可得A=B=C= ,a=b=c=2,S△ABC= absinC= = .
故選:D.
【考點(diǎn)精析】掌握正弦定理的定義是解答本題的根本,需要知道正弦定理:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD和矩形ACEF所在的平面互相垂直, ,AF=1,M是線段EF的中點(diǎn).
(1)求證:AM∥平面BDE;
(2)求證:AM⊥平面BDF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知多面體的底面是邊長為2的正方形, 底面, ,且.
(Ⅰ)記線段的中點(diǎn)為,在平面內(nèi)過點(diǎn)作一條直線與平面平行,要求保留作圖痕跡,但不要求證明.
(Ⅱ)求直線與平面所成角的正弦值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】f(x)=2cos2x﹣2acosx﹣1﹣2a的最小值為g(a),a∈R
(1)求g(a);
(2)若g(a)= ,求a及此時f(x)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形與梯形所在的平面互相垂直,
為的中點(diǎn).
(1)求證: 平面;
(2)求證: 平面;
(3)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)A(0,2)是圓x2+y2=16內(nèi)的定點(diǎn),B,C是這個圓上的兩個動點(diǎn),若BA⊥CA,求BC中點(diǎn)M的軌跡方程,并說明它的軌跡是什么曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,cos2B﹣5cos(A+C)=2.
(1)求角B的值;
(2)若cosA= ,△ABC的面積為10 ,求BC邊上的中線長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】兩個非零向量 、 不共線.
(1)若 = + , =2 +8 , =3( ﹣ ),求證:A、B、D三點(diǎn)共線;
(2)求實(shí)數(shù)k使k + 與2 +k 共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱中, , , , 分別為和上的點(diǎn),且.
(1)當(dāng)為中點(diǎn)時,求證: ;
(2)當(dāng)在上運(yùn)動時,求三棱錐體積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com