【題目】已知集合M={x|x2﹣1≤0},N={x| <2x+1<4,x∈Z},則M∩N=(
A.{﹣1,0}
B.{1}
C.{﹣1,0,1}
D.

【答案】A
【解析】解:集合M={x|x2﹣1≤0}={x|﹣1≤x≤1},

N={x| <2x+1<4,x∈Z}={x|﹣2<x<1,x∈Z}={﹣1,0},

則M∩N={﹣1,0}

故選:A

【考點精析】關于本題考查的集合的交集運算和指、對數(shù)不等式的解法,需要了解交集的性質:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,則AB,反之也成立;指數(shù)不等式的解法規(guī)律:根據(jù)指數(shù)函數(shù)的性質轉化;對數(shù)不等式的解法規(guī)律:根據(jù)對數(shù)函數(shù)的性質轉化才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知如表為“五點法”繪制函數(shù)f(x)=Asin(ωx+φ)圖象時的五個關鍵點的坐標(其中A>0,ω>0,|φ|<π)

x

f(x)

0

2

0

﹣2

0

(Ⅰ)請寫出函數(shù)f(x)的最小正周期和解析式;
(Ⅱ)求函數(shù)f(x)的單調遞減區(qū)間;
(Ⅲ)求函數(shù)f(x)在區(qū)間[0, ]上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知全集U=R,集合A={x|1<2x﹣1<5},B={y|y=( x , x≥﹣2}.
(1)求(UA)∩B;
(2)若集合C={x|a﹣1<x﹣a<1},且CA,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=cos(x﹣ )﹣sin(x﹣ ). (Ⅰ)判斷函數(shù)f(x)的奇偶性,并給出證明;
(Ⅱ)若θ為第一象限角,且f(θ+ )= ,求cos(2θ+ )的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直四棱柱ABCD﹣A1B1C1D1的底面ABCD是菱形,∠ADC=120°,AA1=AB=1,點O1、O分別是上下底菱形對角線的交點.
(1)求證:A1O∥平面CB1D1;
(2)求點O到平面CB1D1的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從雙曲線 =1(a>0,b>0)的左焦點F引圓x2+y2=a2的切線,切點為T,延長FT交雙曲線右支于點P,若M為線段FP的中點,O為坐標原點,則|MO|﹣|MT|與b﹣a的大小關系為(
A.|MO|﹣|MT|>b﹣a
B.|MO|﹣|MT|=b﹣a
C.|MP|﹣|MT|<b﹣a
D.不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若實數(shù)a,b,c滿足loga3<logb3<logc3,則下列關系中不可能成立的(
A.a<b<c
B.b<a<c
C.c<b<a
D.a<c<b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】經過長期觀測得到:在交通繁忙的時段內,某公路段汽車的車流量y(千輛/小時)與汽車的平均速度υ(千米/小時)之間的函數(shù)關系為:y= (υ>0).
(1)在該時段內,當汽車的平均速度υ為多少時,車流量最大?最大車流量為多少?(保留分數(shù)形式)
(2)若要求在該時段內車流量超過10千輛/小時,則汽車的平均速度應在什么范圍內?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】假設關于某設備的使用年限x和所支出的維修費用y(萬元),有如下的統(tǒng)計資料:

x

1

2

3

4

5

y

5

6

7

8

10

由資料可知y對x呈線性相關關系,且線性回歸方程為 ,請估計使用年限為20年時,維修費用約為(
A.26.2
B.27
C.27.6
D.28.2

查看答案和解析>>

同步練習冊答案