給定下列四個命題:
①若一條直線與一個平面平行,那么這條直線平行于這個平面內的任一直線;
②若一條直線與一個平面垂直,那么這條直線垂直于這個平面內的任一直線;
③若兩個平面平行,那么分別在兩個平面內的直線平行;
④若兩個平面垂直,那么一個平面內垂直于交線的直線與另一個平面垂直.
其中,為真命題的是( 。
A、①和②B、②和③
C、③和④D、②和④
考點:空間中直線與平面之間的位置關系
專題:開放型,空間位置關系與距離
分析:根據(jù)直線與平面、平面與平面之間的位置關系,依次分析命題,即可得出結論.
解答: 解:①若直線l平行平面α,則l與平面α內的任一條直線有兩種位置關系:平行、異面,故①錯誤;
②如果一條直線垂直于一個平面,那么由直線與平面垂直的性質知:這條直線與這個平面內的任何直線垂直.故②正確;
③若兩個平面平行,那么分別在兩個平面內的直線平行、異面,故③錯誤;
④由面面垂直的性質定理知,兩個平面垂直,那么一個平面內垂直于交線的直線與另一個平面垂直,正確.
故選:D.
點評:本題主要考查了空間中直線與平面之間的位置關系,考查空間想象能力和思維能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
1-x
x-2
的值域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={1,2,3,4},B={2,4,6},則A∩B的元素個數(shù)是( 。
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若拋物線C:y2=2px(p>0)上一點到焦點和x軸的距離分別為5和3,則此拋物線的方程為(  )
A、y2=2x
B、y2=(
34
-4)x
C、y2=2x或y2=18x
D、y2=3x或y2=(
34
-4)x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinα+cosα=
1
3
,則sin2
π
4
-α)=( 。
A、
1
18
B、
17
18
C、
8
9
D、
2
9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設0<a<b,且f(x)=
1+
1+x
x
,則下列大小關系式成立的是(  )
A、f (a)<f (
a+b
2
)<f (
ab
B、f (
a+b
2
)<f (b)<f (
ab
C、f (
ab
)<f (
a+b
2
)<f (a)
D、f (b)<f (
a+b
2
)<f (
ab

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x+
a
x
+lnx,(a∈R).
(Ⅰ)若f(x)有最值,求實數(shù)a的取值范圍;
(Ⅱ)當a≥2時,若存在x1、x2(x1≠x2),使得曲線y=f(x)在x=x1與x=x2處的切線互相平行,求證:x1+x2>8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出50個數(shù),1,2,4,7,11,…,其規(guī)律是:第1個數(shù)是1,第2個數(shù)比第1個數(shù)大1,第3個數(shù)比第2個數(shù)大2,第4個數(shù)比第3個數(shù)大3,…,以此類推.要求計算這50個數(shù)的和.先將右面給出的程序框圖補充完整,再將與其功能相當?shù)某绦蛘Z言補充完整,把答案寫在下面空格上.
程序語言:


(1)
 
 (2)
 
   (3)
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x3-
9
2
x2+6x-a

(1)求函數(shù)f(x)的單調區(qū)間.
(2)若方程f(x)=0有且僅有三個實根,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案