【題目】某學(xué)校一個(gè)生物興趣小組對(duì)學(xué)校的人工湖中養(yǎng)殖的某種魚類進(jìn)行觀測(cè)研究,在飼料充足的前提下,興趣小組對(duì)飼養(yǎng)時(shí)間x(單位:月)與這種魚類的平均體重y(單位:千克)得到一組觀測(cè)值,如下表:

xi(月)

1

2

3

4

5

yi(千克)

0.5

0.9

1.7

2.1

2.8


(1)在給出的坐標(biāo)系中,畫出關(guān)于x,y兩個(gè)相關(guān)變量的散點(diǎn)圖.
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出變量y關(guān)于變量x的線性回歸直線方程
(3)預(yù)測(cè)飼養(yǎng)滿12個(gè)月時(shí),這種魚的平均體重(單位:千克)
(參考公式: = ,

【答案】
(1)解:散點(diǎn)圖如圖所示


(2)解:由題設(shè) =3, =1.6,

= = =0.58,

a= =﹣0.14

故回歸直線方程為y=0.58x﹣0.14


(3)解:當(dāng)x=12時(shí),y=0.58×12﹣0.14=6.82

飼養(yǎng)滿12個(gè)月時(shí),這種魚的平均體重約為6.82千克


【解析】(1)利用所給數(shù)據(jù),可得散點(diǎn)圖;(2)利用公式,計(jì)算回歸系數(shù),即可得到回歸方程;(3)x=12代入回歸方程,即可得到結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了得到函數(shù)y=2sin( ),x∈R的圖象只需把函數(shù)y=2sinx,x∈R的圖象上所有的點(diǎn)(
A.向右平移 個(gè)單位長(zhǎng)度,再把所有各點(diǎn)的橫坐標(biāo)縮短到原來的
B.向左平移 個(gè)單位長(zhǎng)度,再把所有各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的3倍
C.向左平移 個(gè)單位長(zhǎng)度,再把所有各點(diǎn)的橫坐標(biāo)縮短到原來的
D.向右平移 個(gè)單位長(zhǎng)度,再把所有各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的3倍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn , 且2Sn=(an﹣1)(an+2),
(1)求數(shù)列{an}的通項(xiàng)公式
(2)設(shè)數(shù)列{ }的前n項(xiàng)和為Tn , 試比較Tn 的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(ω>0,0<φ< )的部分圖象如圖.
(1)求f(x)的解析式;
(2)將函數(shù)y=f(x)的圖象上所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的 倍,再將所得函數(shù)圖象向右平移 個(gè)單位,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是梯形, , , , ,側(cè)面底面.

(1)求證:平面平面

(2)若與底面所成角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列數(shù)列中,既是遞增數(shù)列又是無窮數(shù)列的是(
A.1, , ,…
B.﹣1,﹣2,﹣3,﹣4,…
C.﹣1,﹣ ,﹣ ,﹣ ,…
D.1, , ,…,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在公差不為零的等差數(shù)列{an}和等比數(shù)列{bn}中.已知a1=b1=1.a(chǎn)2=b2 . a6=b3
(1)求等差數(shù)列{an}的通項(xiàng)公式an和等比數(shù)列{bn}的通項(xiàng)公式bn
(2)求數(shù)列{anbn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐E﹣ABCD中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.
(1)求棱錐C﹣ADE的體積;
(2)在線段DE上是否存在一點(diǎn)P,使AF∥平面BCE?若存在,求出 的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且a2+c2=b2﹣ac.
(1)求B的大;
(2)設(shè)∠BAC的平分線AD交BC于D,AD=2 ,BD=1,求cosC的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案