(理)設a1,a2,…,a20是首項為1,公比為2的等比數(shù)列.對于滿足0≤k≤19的整數(shù)k,數(shù)列b1,b2,…,b20由bn=確定.記M=.

(1)當k=1時,求M的值;

(2)求M的最小值及相應的k的值.

(文)設數(shù)列{an}的首項a1=a(a∈R),且an+1=n=1,2,3,….

(1)若0<a<1,求a2、a3、a4、a5;

(2)若0<an<4,證明0<an+1<4;

(3)若0<a≤2,求所有的正整數(shù)k,使得對于任意n∈N*,均有an+k=an成立.

答案:(理)解:(1)顯然an=2n-1,其中1≤n≤20.

當k=1時,bn=.

所以,

.

(2)M=

 

=(40-k-2k)+(220+k-220-k)

=.

當2k=,即k=10時,M=.

所以M的最小值為,此時k=10.

(文)(1)解:因為a1=a∈(0,1),所以a2=-a1+4=-a+4,且a2∈(3,4).所以a3=a2-3=-a+1,且a3∈(0,1).所以a4=-a3+4=a+3,且a4∈(3,4).所以a5=a4-3=a.

(2)證明:①當0<an≤3時,an+1=-an+4,所以1≤an+1<4.

②當3<an<4時,an+1=an-3,所以0<an+1<1.綜上,0<an<4時,0<an+1<4.

(3)解:①若0<a<1,由(1),知a5=a1,所以k=4;因此,當k=4m(m∈N*)時,對所有的n∈N*,an+k=an成立.

②若1≤a<2,則a2=-a+4,且a2∈(2,3],a3=-a2+4=-(-a+4)+4=a=a1,所以k=2;因此,當k=2m(m∈N*)時,對所有的n∈N*,an+k=an成立.

③若a=2,則a2=a3=a4=…,所以k=1.因此,當k=m(m∈N*)時,對所有的n∈N*,an+k=an成立.

綜上,若0<a<1,則k=4m;若1≤a<2,則k=2m;若a=2,則k=m(m∈N*).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(理) 某次國際象棋友誼賽在中國隊和烏克蘭隊之間舉行,比賽采用積分制,比賽規(guī)則規(guī)定贏一局得2分,平一局得1分,輸一局得0分,根據(jù)以往戰(zhàn)況,每局中國隊贏的概率為
1
2
,烏克蘭隊贏的概率為
1
3
,且每局比賽輸贏互不影響.若中國隊第n局的得分記為an,令Sn=a1+a2+…+an
(1)求S3=4的概率;
(2)若規(guī)定:當其中一方的積分達到或超過4分時,比賽不再繼續(xù),否則,繼續(xù)進行.設隨機變量ξ表示此次比賽共進行的局數(shù),求ξ的分布列及數(shù)學期望.
(文) 某次國際象棋友誼賽在中國隊和烏克蘭隊之間舉行,比賽采用積分制,比賽規(guī)則規(guī)定贏一局得2分,平一局得1分,輸一局得0分,根據(jù)以往戰(zhàn)況,每局中國隊贏的概率為
1
2
,烏克蘭隊贏的概率為
1
3
,且每局比賽輸贏互不影響.若中國隊第n局的得分記為an,令Sn=a1+a2+…+an
(1)求S3=4的概率;
(2)若規(guī)定:當其中一方的積分達到或超過4分時,比賽不再繼續(xù),否則,繼續(xù)進行.求比賽進行三局就結束比賽的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理)設函數(shù)f(x)=a1•sin(x+α1)+a2•sin(x+α2)+…+an•sin(x+αn),其中ai、αi(i=1,2,…,n,n∈N*,n≥2)為已知實常數(shù),x∈R.
下列關于函數(shù)f(x)的性質判斷正確的命題的序號是
①②③④
①②③④

①若f(0)=f(
π
2
)=0
,則f(x)=0對任意實數(shù)x恒成立;
②若f(0)=0,則函數(shù)f(x)為奇函數(shù);
③若f(
π
2
)=0
,則函數(shù)f(x)為偶函數(shù);
④當f2(0)+f2(
π
2
)≠0
時,若f(x1)=f(x2)=0,則x1-x2=kπ(k∈Z).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(07年陜西卷理)

設集合S={A0,A1,A2,A3},在S上定義運算為:AiAj=Ak,其中k為I+j被4除的余數(shù),i、j=0,1,2,3.滿足關系式=(xx)A2=A0的x(x∈S)的個數(shù)為

A.4              B.3             C.2              D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(04年浙江卷理)如圖,△OBC的三個頂點坐標分別為(0,0)、(1,0)、(0,2),設P1為線段BC的中點,P2為線段CO的中點,P3為線段OP1的中點,對于每一個正整數(shù)n,Pn+3為線段PnPn+1的中點,令Pn的坐標為(xn,yn),an=yn+yn+1+yn+2.
(1)求a1,a2,a3an;
(2)證明,nÎN*;
(3)若記bn=y4n+4-y4n,nÎN*,證明{bn}是等比數(shù)列。

查看答案和解析>>

同步練習冊答案