已知橢圓數(shù)學(xué)公式的離心率是數(shù)學(xué)公式
(1)證明:a=2b;
(2)設(shè)點P為橢圓上的動點,點數(shù)學(xué)公式,若數(shù)學(xué)公式的最大值是數(shù)學(xué)公式,求橢圓的方程.

解:(1)證明:設(shè)橢圓的半焦距為c.
因為橢圓的離心率是,所以 ,即a=2b.
(2)設(shè)點P(x,y).
=,其中-b≤y≤b.
①若2,則當(dāng)y=-b3時,4取得最大值.
由題設(shè),,這與矛盾.
②若,則當(dāng)時,取得最大值.
由題設(shè),,解得b=1,從而a=2.
故橢圓方程為
分析:(1)根據(jù)離心率為=以及c2=a2-b2,即可證明結(jié)論.
(2)設(shè)P(x,y)由//的最大值為,求得b的值,從而求得橢圓方程.
點評:本題主要考查橢圓的基本性質(zhì),并滲透了向量、函數(shù)最值等問題,此題要注意對b的范圍進(jìn)行分類討論,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線l與橢圓
x2
a2
+
y2
b2
=1(a>b>0)
交于不同的兩點M,N,過點M,N作x軸的垂線,垂足恰好是橢圓的兩個焦點,已知橢圓的離心率是
2
2
,直線l的斜率存在且不為0,那么直線l的斜率是
±
2
2
±
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年臨川二中新余四中高三暑假聯(lián)考文科數(shù)學(xué)卷 題型:解答題

已知橢圓的離心率是,右焦點到上頂點的距離為,點是線段上的一個動點.

(1)求橢圓的方程;

(2)是否存在過點且與軸不垂直的直線與橢圓交于兩點,使得,并說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年黑龍江省高二上學(xué)期期末考試數(shù)學(xué)文卷 題型:解答題

、已知橢圓的離心率是,長軸長是為6,

(1)求橢圓的方程;

(2)設(shè)直線交于兩點,已知點的坐標(biāo)為,求直線的方程。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

直線l與橢圓
x2
a2
+
y2
b2
=1(a>b>0)
交于不同的兩點M,N,過點M,N作x軸的垂線,垂足恰好是橢圓的兩個焦點,已知橢圓的離心率是
2
2
,直線l的斜率存在且不為0,那么直線l的斜率是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年北京市西城區(qū)高二(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知橢圓的離心率是
(1)證明:a=2b;
(2)設(shè)點P為橢圓上的動點,點,若的最大值是,求橢圓的方程.

查看答案和解析>>

同步練習(xí)冊答案