【題目】如圖,在梯形ABCD中,AB∥CD,CD=2,△ABC是邊長為3的等邊三角形.
(1)求AD;
(2)求sin∠DAB.
科目:高中數學 來源: 題型:
【題目】某制造商月生產了一批乒乓球,隨機抽樣個進行檢查,測得每個球的直徑(單位:mm),將數據分組如下表
分組 | 頻數 | 頻率 |
| 10 | |
20 | ||
50 | ||
20 | ||
合計 | 100 |
(1)請在上表中補充完成頻率分布表(結果保留兩位小數),并在上圖中畫出頻率分布直方圖;
(2)統(tǒng)計方法中,同一組數據常用該組區(qū)間的中點值(例如區(qū)間的中點值是)作為代表.據此估計這批乒乓球直徑的平均值(結果保留兩位小數).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C對應的邊分別是a,b,c,已知cos2A﹣3cos(B+C)=1.
(1)求角A的大;
(2)若△ABC的面積S=5,b=5,求sinBsinC的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,側面PAD為等邊三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°,E是PD的中點.
(Ⅰ)證明:直線CE∥平面PAB;
(Ⅱ)點M在棱PC 上,且直線BM與底面ABCD所成角為45°,求二面角M﹣AB﹣D的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數交軸于兩點(不重合),交軸于點. 圓過三點.下列說法正確的是( )
① 圓心在直線上;
② 的取值范圍是;
③ 圓半徑的最小值為;
④ 存在定點,使得圓恒過點.
A. ①②③B. ①③④C. ②③D. ①④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)的導函數為f′(x),若f(x)=ex﹣f(0)x+x2(e是自然對數的底數).
(1)求f(0)和f′(1)的值;
(2)若g(x)=x2+a與函數f(x)的圖象在區(qū)間[﹣1,2]上恰有2兩個不同的交點,求實數a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com