化簡下列各式
(1)
tan1500cos(-5700)
sin(-6900)
;       
(2)
tan(π-α)sin(α+
π
2
)cos(2π-α)
cos(-π-α)tan(α-2π)
考點:運用誘導(dǎo)公式化簡求值,任意角的概念
專題:三角函數(shù)的求值
分析:(1)直接利用誘導(dǎo)公式化簡求解即可.
(2)利用誘導(dǎo)公式化簡,再利用同角三角函數(shù)間的基本關(guān)系變形,把tanα的值代入計算即可求出值
解答: 解:(1)
tan1500cos(-5700)
sin(-6900)
=
tan1500cos210°
sin30°
=
-
3
×(-
3
2
)
1
2
=1;       
(2)
tan(π-α)sin(α+
π
2
)cos(2π-α)
cos(-π-α)tan(α-2π)
=
tanαcosαcosα
cosαtanα
=cosα.
點評:此題考查了運用誘導(dǎo)公式化簡求值,以及同角三角函數(shù)間的基本關(guān)系,熟練掌握誘導(dǎo)公式及基本關(guān)系是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知角θ的終邊上有一點P(-5,12),求sinθ,cosθ,tanθ
(2)已知cosα=-
4
5
,求sinα,tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinxcosx=
3
8
且x∈(
π
4
,
π
2
),則sinx-cosx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-2
3
sin2x+sin2x+
3

(Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間;
(Ⅱ)在給出的直角坐標系中,畫出函數(shù)y=f(x)在區(qū)間[0,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=4x2+8x-3.
(1)指出函數(shù)y=f(x)圖象的開口方向、對稱軸方程、頂點坐標;
(2)求y=f(x)的最小值;
(3)寫出函數(shù)y=f(x)的單調(diào)區(qū)間.
(4)當(dāng)x∈[0,2]時,求函數(shù)y=f(x)的最大植和最小植.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+bx2+cx+d在(-∞,0]上為增函數(shù),在[0,6]上為減函數(shù),且方程f(x)=0的三個根分別為1,x1,x2
(1)求實數(shù)b的取值范圍;
(2)求x12-4x1x2+x22的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某市舉辦歌唱比賽,邀請了A、B、C、D四位資深音樂人擔(dān)任評委,按照節(jié)目程序,每一位選手取得決賽資格后可通過抽簽的方式選擇一位評委作為導(dǎo)師,且他們對導(dǎo)師的選擇是相互獨立的,某組共有甲、乙、丙、丁四位選手取得了決賽資格,獲得了選擇導(dǎo)師的機會.
(Ⅰ)求甲、乙、丙三人都選擇A為導(dǎo)師的概率;
(Ⅱ)求四位選手至少有一人選擇B作為導(dǎo)師的概率;
(Ⅲ)設(shè)四位選手選擇C為導(dǎo)師的人數(shù)ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|3≤x≤7},B={x|2<x<10},C={x|x<a},全集為實數(shù)集R.
(1)求A∪B,(∁RA)∩B;
(2)如果A∩C≠∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=4sin(
π
2
+
x
2
)cos(
x
2
+
π
6
).
(Ⅰ)求函數(shù)f(x)的最小正周期和圖象對稱中心的坐標;
(Ⅱ)在△ABC中,設(shè)內(nèi)角A,B,C的對邊分別是a,b,c,如果c=1,f(C)=
3
+1,且△ABC的面積為
3
2
,求sinA+sinB+sinC的值.

查看答案和解析>>

同步練習(xí)冊答案