已知函數(shù)f(x)=x2+(2a-1)x-3
(1)當(dāng)a=2,x∈[-2,3]時(shí),求函數(shù)f(x)的值域;
(2)若函數(shù)f(x)在[-1,3]上的最大值為1,求實(shí)數(shù)a的值.
解:(1)當(dāng)a=2時(shí),f(x)=x
2+3x-3
=(x+
)
2-
,對稱軸為x=-
<3,
∴函數(shù)在[-2,-
]上單調(diào)遞減函數(shù),在[-
,3]上單調(diào)遞增函數(shù),
∴f(
)≤y≤f(3)
f(3)=15,f(
)=-
∴該函數(shù)的值域?yàn)椋篬
,15].
(2)函數(shù)f(x)=x
2+(2a-1)x-3的對稱軸是:x=
-a.
當(dāng)
-a>1時(shí),函數(shù)f(x)在[-1,3]上的最大值為f(-1)=-2a-1=1
∴a=-1;
當(dāng)
-a≤1時(shí),函數(shù)f(x)在[-1,3]上的最大值為f(3)=6a+3=1
∴a=-
;
∴實(shí)數(shù)a的值a=-
.或a=-1.
分析:(1)當(dāng)a=2時(shí),先將二次函數(shù)進(jìn)行配方,然后求出對稱軸,結(jié)合函數(shù)的圖象可求出函數(shù)的值域.
(2)根據(jù)二次函數(shù)的性質(zhì)可知二次項(xiàng)的系數(shù)為正數(shù),函數(shù)f(x)=x
2+(2a-1)x-3的對稱軸是:x=
-a.進(jìn)行分類討論:當(dāng)=
-a>1時(shí),當(dāng)=
-a>1時(shí),分別函數(shù)f(x)在[-1,3]上的最大值,再根據(jù)最值在定點(diǎn)處取得建立等式關(guān)系,解之即可.
點(diǎn)評:本題主要考查了函數(shù)的值域,以及二次函數(shù)的圖象等有關(guān)基礎(chǔ)知識,考查計(jì)算能力,數(shù)形結(jié)合的思想,屬于基礎(chǔ)題.