【題目】一種擲硬幣走跳棋的游戲:在棋盤上標(biāo)有第1站、第2站、第3站、、第100站,共100站,設(shè)棋子跳到第站的概率為,一枚棋子開(kāi)始在第1站,棋手每擲一次硬幣,棋子向前跳動(dòng)一次.若硬幣的正面向上,棋子向前跳一站;若硬幣的反面向上,棋子向前跳兩站,直到棋子跳到第99站(失。┗蛘叩100站(獲勝)時(shí),游戲結(jié)束.

1)求;

2)求證:數(shù)列為等比數(shù)列;

3)求玩該游戲獲勝的概率.

【答案】1,, 2)證明見(jiàn)解析 3

【解析】

1)根據(jù)題意,分析可得棋子在1站是一個(gè)必然事件,即可得P1的值,進(jìn)而分析棋子跳到2站以及棋子跳到3站的情況,據(jù)此求出P2P3的值(2)根據(jù)題意,分析可得,變形可得,即可得結(jié)論(3)由(2)知,利用累加法求出,由對(duì)立事件的概率性質(zhì)求出.

1)棋子開(kāi)始在第1站是必然事件,;

棋子跳到第2站,只有一種情況,第一次擲硬幣正面向上,

其概率為;

棋子跳到第3站,有兩種情況,①第一次擲硬幣反面向上,其概率為;②前兩次擲硬幣都是正面向上,其概率為

2)棋子棋子跳到第站,有兩種情況:①棋子先跳到第n站,又?jǐn)S硬幣反面向上,其概率為;②棋子先跳到第站,又?jǐn)S硬幣正面向上,其概率為..

,

數(shù)列是以為首項(xiàng),為公比的等比數(shù)列.

3)由(2)得.

所以獲勝的概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax+blnx(a,bR)在點(diǎn)(1,f(1))處的切線方程為yx1.

(1)求ab的值;

(2)當(dāng)x>1時(shí),f(x)0恒成立,求實(shí)數(shù)k的取值范圍;

(3)設(shè)g(x)=exx,求證:對(duì)于x∈(0,+∞),g(x)﹣f(x)>2恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),是兩條不同的直線,,,是三個(gè)不同的平面,給出下列四個(gè)命題:

①若,,則

②若,,則

③若,則

④若,則

其中正確命題的序號(hào)是(

A.①和②B.②和③C.③和④D.①和④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形平面,,,且,分別為的中點(diǎn).

1)證明:平面;

2)若,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】追求人類與生存環(huán)境的和諧發(fā)展是中國(guó)特色社會(huì)主義生態(tài)文明的價(jià)值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機(jī)抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)()的檢測(cè)數(shù)據(jù),結(jié)果統(tǒng)計(jì)如下:

空氣質(zhì)量

優(yōu)

輕度污染

中度污染

重度污染

嚴(yán)重污染

天數(shù)

6

14

18

27

25

10

1)從空氣質(zhì)量指數(shù)屬于的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;

2)已知某企業(yè)每天的經(jīng)濟(jì)損失(單位:元)與空氣質(zhì)量指數(shù)的關(guān)系式為,試估計(jì)該企業(yè)一個(gè)月(按30天計(jì)算)的經(jīng)濟(jì)損失的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,楔形幾何體由一個(gè)三棱柱截去部分后所得,底面側(cè)面,,楔面是邊長(zhǎng)為2的正三角形,點(diǎn)在側(cè)面的射影是矩形的中心,點(diǎn)上,且

1)證明:平面;

2)求楔面與側(cè)面所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某生產(chǎn)旅游紀(jì)念品的工廠,擬在2017年度進(jìn)行系列促銷活動(dòng).經(jīng)市場(chǎng)調(diào)查和測(cè)算,該紀(jì)念品的年銷售量x單位:萬(wàn)件與年促銷費(fèi)用t單位:萬(wàn)元之間滿足3-x與t+1成反比例.若不搞促銷活動(dòng),紀(jì)念品的年銷售量只有1萬(wàn)件.已知工廠2017年生產(chǎn)紀(jì)念品的固定投資為3萬(wàn)元,每生產(chǎn)1萬(wàn)件紀(jì)念品另外需要投資32萬(wàn)元.當(dāng)工廠把每件紀(jì)念品的售價(jià)定為“年平均每件生產(chǎn)成本的1.5倍”與“年平均每件所占促銷費(fèi)的一半”之和時(shí),則當(dāng)年的產(chǎn)量和銷量相等.利潤(rùn)=收入-生產(chǎn)成本-促銷費(fèi)用

(1)請(qǐng)把該工廠2017年的年利潤(rùn)y單位:萬(wàn)元表示成促銷費(fèi)t單位:萬(wàn)元的函數(shù);

(2)試問(wèn):當(dāng)2017年的促銷費(fèi)投入多少萬(wàn)元時(shí),該工廠的年利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),無(wú)窮數(shù)列的首項(xiàng)

1)如果,寫出數(shù)列的通項(xiàng)公式;

2)如果),要使得數(shù)列是等差數(shù)列,求首項(xiàng)的取值范圍;

3)如果),求出數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地計(jì)劃在一處海灘建造一個(gè)養(yǎng)殖場(chǎng).

1)如圖1,射線OA,OB為海岸線,,現(xiàn)用長(zhǎng)度為1千米的圍網(wǎng)PQ依托海岸線圍成一個(gè)的養(yǎng)殖場(chǎng),問(wèn)如何選取點(diǎn)P,Q,才能使養(yǎng)殖場(chǎng)的面積最大,并求其最大面積.

2)如圖2,直線l為海岸線,現(xiàn)用長(zhǎng)度為1千米的圍網(wǎng)依托海岸線圍成一個(gè)養(yǎng)殖場(chǎng).方案一:圍成三角形OAB(點(diǎn)AB在直線l上),使三角形OAB面積最大,設(shè)其為;方案二:圍成弓形CDE(點(diǎn)D,E在直線l上,C是優(yōu)弧所在圓的圓心且),其面積為;試求出的最大值和(均精確到0.01平方千米),并指出哪一種設(shè)計(jì)方案更好.

查看答案和解析>>

同步練習(xí)冊(cè)答案