某工廠生產(chǎn)某種產(chǎn)品,每日的成本C(單位:萬元)與日產(chǎn)量x(單位:噸)滿足函數(shù)關(guān)系式C=3+x,每日的銷售額S(單位:萬元)與日產(chǎn)量x的函數(shù)關(guān)系式S=
x+
k
x-8
+5    (0<x<6)
14                  (x≥6)
,已知每日的利潤L=S-C,且當(dāng)x=2時,L=3.
(1)求k的值;
(2)當(dāng)日產(chǎn)量為多少噸時,每日的利潤可以達(dá)到最大,并求出最大值.
分析:(1)利用每日的利潤L=S-C,且當(dāng)x=2時,L=3,可求k的值;
(2)利用分段函數(shù),分別求出相應(yīng)的最值,即可得出函數(shù)的最大值.
解答:解:由題意,每日利潤L與日產(chǎn)量x的函數(shù)關(guān)系式為y=
2x+
k
x-8
+2   (0<x<6)
11-x              (x≥6)
…(4分)
(1)當(dāng)x=2時,L=3,即:3=2×2+
k
2-8
+2
…(5分)
∴k=18…(6分)
(2)當(dāng)x≥6時,L=11-x為單調(diào)遞減函數(shù),
故當(dāng)x=6時,Lmax=5 …(8分)
當(dāng)0<x<6時,L=2x+
18
x-8
+2=2(x-8)+
18
x-8
+18≤6
…(11分)
當(dāng)且僅當(dāng)2(x-8)=
18
x-8
(0<x<6)
,
即x=5時,Lmax=6…(13分)
綜合上述情況,當(dāng)日產(chǎn)量為5噸時,日利潤達(dá)到最大6萬元.…(14分)
點(diǎn)評:本題考查函數(shù)解析式的確定,考查函數(shù)的最值,確定函數(shù)的解析式是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某工廠生產(chǎn)某種產(chǎn)品,已知該產(chǎn)品的產(chǎn)量x(噸)與每噸產(chǎn)品的價(jià)格P(元/噸)之間的關(guān)系為P=24200-
15
x2
,且生產(chǎn)x噸的成本為R=50000+200x元.問該廠每月生產(chǎn)多少噸產(chǎn)品才能使利潤達(dá)到最大?最大利潤是多少?(利潤=收入-成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠生產(chǎn)某種產(chǎn)品固定成本為2000萬元,并且每生產(chǎn)一單位產(chǎn)品,成本增加10萬元,又知總收入k是單位產(chǎn)品數(shù)Q的函數(shù),k(Q)=40Q-
120
Q2,則總利潤L(Q)的最大值是
2500萬元
2500萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠生產(chǎn)某種產(chǎn)品,已知該產(chǎn)品的月生產(chǎn)量x(噸)與每噸產(chǎn)品的價(jià)格P(元/噸)之間的關(guān)系式為P=24200-
15
x2
,且生產(chǎn)x噸的成本為R=50000+200x(元).
(1)求該工廠月利潤L(元)關(guān)于月生產(chǎn)量x(噸)的函數(shù)關(guān)系式;(月利潤=月收入-月成本)
(2)求該工廠每月生產(chǎn)多少噸產(chǎn)品才能使月利潤達(dá)到最大?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠生產(chǎn)某種產(chǎn)品,已知該產(chǎn)品每噸的價(jià)格P(元)與產(chǎn)量x(噸)之間的關(guān)系式為 P=24200-
15
x2
,且生產(chǎn)x噸的成本為(50000+200x)元,則該廠利潤最大時,生產(chǎn)的產(chǎn)品的噸數(shù)為
200
200

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠生產(chǎn)某種產(chǎn)品的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)有如表幾組樣本數(shù)據(jù):
x 3 4 5 6
y 2.5 3 4 4.5
據(jù)相關(guān)性檢驗(yàn),這組樣本數(shù)據(jù)具有線性相關(guān)關(guān)系,通過線性回歸分析,求得其回歸直線的斜率為0.7,則這組樣本數(shù)據(jù)的回歸直線方程是( 。

查看答案和解析>>

同步練習(xí)冊答案