如圖所示,△ABC內(nèi)接于⊙O,AB=AC,直線XY切⊙O于點(diǎn)C,BD∥XY,AC、BD相交于E.
(1)求證:△ABE≌△ACD;
(2)若AB=6 cm,BC=4 cm,求AE的長.
(1)見解析;(2).
解析試題分析:(1)欲證三角形全等,需牢牢掌握這種證明方法和所需要的條件.本小題,(已知),下尋找另外的邊和角,考慮到這里有圓,所以運(yùn)用同弧所對(duì)應(yīng)的圓周角相等可得(弧所對(duì)),接著證明(其他角和邊不好證,同時(shí)這里有弦切角可以利用).(2)欲求,因,則可轉(zhuǎn)化為求,考慮到,需將聯(lián)系起來就得考慮三角形相似.注意到,.
試題解析:(1)證明 因?yàn)閄Y是⊙O的切線,所以.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/7f/6/14s9d4.png" style="vertical-align:middle;" />,所以,∴. 2分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b9/6/1mcdq3.png" style="vertical-align:middle;" />,所以. 4分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/52/9/1i3pu4.png" style="vertical-align:middle;" />,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2a/d/1kpkg3.png" style="vertical-align:middle;" />,
所以. 5分
(2)解 因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2d/2/nttjs2.png" style="vertical-align:middle;" />,,
所以, 7分
所以, 即 8分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d8/7/dcpc81.png" style="vertical-align:middle;" />,,
所以.所以AE. 10分
考點(diǎn):(1)三角形全等的證明;(2)三角形相似的證明與應(yīng)用;(3)圓性質(zhì)的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知圓內(nèi)接四邊形,切圓于點(diǎn),且與四邊形對(duì)角線延長線交于點(diǎn),切圓O于點(diǎn),且與延長線交于點(diǎn),延長交于點(diǎn),若.
(1)求證:;
(2)求證:四點(diǎn)共圓.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四邊形是的內(nèi)接四邊形,的延長線與的延長線交于點(diǎn),且.
(I)證明:;
(II)設(shè)不是的直徑,的中點(diǎn)為,且,證明:為等邊三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,△ABC中,AB=AC,AD是中線,P為AD上一點(diǎn),CF∥AB,BP延長線交AC、CF于E、F,求證:PB2=PE·PF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,是外一點(diǎn),是切線,為切點(diǎn),割線與相交于,,為的中點(diǎn),的延長線交于點(diǎn).證明:
(1);
(2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直線AB為圓的切線,切點(diǎn)為B,點(diǎn)C在圓上,∠ABC的角平分線BE交圓于點(diǎn)E,DB垂直BE交圓于點(diǎn)D.
(1)證明:DB=DC;
(2)設(shè)圓的半徑為1,BC=,延長CE交AB于點(diǎn)F,求△BCF外接圓的半徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com