對(duì)任意兩個(gè)正整數(shù)m、n,定義某種運(yùn)算(用表示運(yùn)算符號(hào)):當(dāng)m、n都是正偶數(shù)或都是正奇數(shù)時(shí),mn=m+n;當(dāng)m、n-奇-偶時(shí),則mn=mn,則在上述定義下,集合M={(m、n)|mn=36}中的元素個(gè)數(shù)為________

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有下列敘述
①集合A=(m+2,2m-1)⊆B=(4,5),則m∈[2,3]
②兩向量平行,那么兩向量的方向一定相同或者相反
③若不等式(-1)na<2+
(-1)n+1
n
對(duì)任意正整數(shù)n恒成立,則實(shí)數(shù)a的取值范圍是[-2,
3
2
)

④對(duì)于任意兩個(gè)正整數(shù)m,n,定義某種運(yùn)算⊕如下:
當(dāng)m,n奇偶性相同時(shí),m⊕n=m+n;當(dāng)m,n奇偶性不同時(shí),m⊕n=mn,在此定義下,集合M={(a,b)|a⊕b=12,a∈N+,b∈N+}中元素的個(gè)數(shù)是15個(gè).
上述說法正確的是
③,④
③,④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

有下列敘述
①集合A=(m+2,2m-1)⊆B=(4,5),則m∈[2,3]
②兩向量平行,那么兩向量的方向一定相同或者相反
③若不等式(-1)na<2+
(-1)n+1
n
對(duì)任意正整數(shù)n恒成立,則實(shí)數(shù)a的取值范圍是[-2,
3
2
)

④對(duì)于任意兩個(gè)正整數(shù)m,n,定義某種運(yùn)算⊕如下:
當(dāng)m,n奇偶性相同時(shí),m⊕n=m+n;當(dāng)m,n奇偶性不同時(shí),m⊕n=mn,在此定義下,集合M={(a,b)|a⊕b=12,a∈N+,b∈N+}中元素的個(gè)數(shù)是15個(gè).
上述說法正確的是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列敘述

①集合A=(m+2,2m﹣1)⊆B=(4,5),則m∈[2,3]

②兩向量平行,那么兩向量的方向一定相同或者相反

③若不等式對(duì)任意正整數(shù)n恒成立,則實(shí)數(shù)a的取值范圍是————————————

④對(duì)于任意兩個(gè)正整數(shù)m,n,定義某種運(yùn)算⊕如下:

當(dāng)m,n奇偶性相同時(shí),m⊕n=m+n;當(dāng)m,n奇偶性不同時(shí),m⊕n=mn,在此定義下,集合M={(a,b)|a⊕b=12,a∈N+,b∈N+}中元素的個(gè)數(shù)是15個(gè).

上述說法正確的是  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省淮安市盱眙縣新馬中學(xué)高一(下)期初數(shù)學(xué)試卷(解析版) 題型:填空題

有下列敘述
①集合A=(m+2,2m-1)⊆B=(4,5),則m∈[2,3]
②兩向量平行,那么兩向量的方向一定相同或者相反
③若不等式對(duì)任意正整數(shù)n恒成立,則實(shí)數(shù)a的取值范圍是
④對(duì)于任意兩個(gè)正整數(shù)m,n,定義某種運(yùn)算⊕如下:
當(dāng)m,n奇偶性相同時(shí),m⊕n=m+n;當(dāng)m,n奇偶性不同時(shí),m⊕n=mn,在此定義下,集合M={(a,b)|a⊕b=12,a∈N+,b∈N+}中元素的個(gè)數(shù)是15個(gè).
上述說法正確的是   

查看答案和解析>>

同步練習(xí)冊(cè)答案