10、如圖,PA⊥⊙O所在的平面,AB是⊙O的直徑,C是⊙O上的一點,AE⊥PB于E,AF⊥PC于F,給出下列結論:①BC⊥面PAC;②AF⊥面PCB;③EF⊥PB;④AE⊥面PBC.其中正確命題的個數(shù)是(  )
分析:對于①②③可根據(jù)直線與平面垂直的判定定理進行證明,對于④利用反證法進行證明,假設AE⊥面PBC,而AF⊥面PCB,
則AF∥AE,顯然不成立,從而得到結論.
解答:解:∵PA⊥⊙O所在的平面,BC?⊙O所在的平面
∴PA⊥BC,而BC⊥AC,AC∩PA=A
∴BC⊥面PAC,故①正確
又∵AF?面PAC,∴AF⊥BC,而AF⊥PC,PC∩BC=C
∴AF⊥面PCB,故②正確
而PB?面PCB
∴AF⊥PB,而AE⊥PB,AE∩AF=A
∴PB⊥面AEF
而EF?面AEF
∴EF⊥PB,故③正確
∵AF⊥面PCB,假設AE⊥面PBC
∴AF∥AE,顯然不成立,故④不正確
故選C
點評:本題主要考查了直線與平面垂直的判定,以及直線與平面垂直的性質(zhì),考查化歸與轉化的數(shù)學思想方法,以及空間想象能力、推理論證能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

16、如圖,PA⊥⊙O所在的平面,AB是⊙O的直徑,C是⊙O上的一點,AE⊥PB于E,AF⊥PC于F,
下列四個命題中:
①BC⊥面PAC;    ②AF⊥面PBC;
③EF⊥PB;        ④AE⊥面PBC.
其中正確命題的是
①②③
.(請寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,PA⊥⊙O所在的平面,AB是⊙O的直徑,C是⊙O上的一點,AE⊥PB于E,AF⊥PC于F,
給出下列結論:
①BC⊥面PAC;
②AF⊥面PCB;
③EF⊥PB;
④AE⊥面PBC.   
其中正確命題個數(shù)是
3
3
個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,PA⊥⊙O所在平面,AB是⊙O的直徑,C是⊙O上一點,E、F分別是點A在PB、PC上的射影,給出下列結論:①AF⊥PB,②EF⊥PB,③AE⊥BC,④平面AEF⊥平面PBC,⑤△AFE是直角三角形,其中正確的命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖:PA⊥⊙O所在的平面,AB是⊙O的直徑,C是⊙O上的一點,AE⊥PC,AF⊥PB,給出下列結論①AE⊥BC,②AE⊥PB,③AF⊥BC,④AE⊥平面PBC,其中正確命題的序號是(  )

查看答案和解析>>

同步練習冊答案
关 闭