【題目】已知函數(shù).(其中常數(shù),是自然對(duì)數(shù)的底數(shù))

1)若,求上的極大值點(diǎn);

2)()證明上單調(diào)遞增;

)求關(guān)于的方程上的實(shí)數(shù)解的個(gè)數(shù).

【答案】1;(2)()證明見(jiàn)解析,()當(dāng)時(shí),方程上的實(shí)數(shù)解的個(gè)數(shù)為,當(dāng)時(shí),方程上的實(shí)數(shù)解的個(gè)數(shù)為.

【解析】

1)首先求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)得到函數(shù)的單調(diào)區(qū)間,再根據(jù)單調(diào)區(qū)間即可得到函數(shù)的極大值點(diǎn).

2)()首先根據(jù)的單調(diào)性只需證明,將問(wèn)題轉(zhuǎn)化為證明,構(gòu)造函數(shù),再結(jié)合的單調(diào)性即可證明.ii)首先證明,再證明函數(shù)的最大值,設(shè),分別求出的零點(diǎn)個(gè)數(shù),從而得到方程解得個(gè)數(shù).

1.

當(dāng)時(shí),.

增函數(shù)

極大值

減函數(shù)

所以函數(shù)的極大值點(diǎn)為.

2)()因?yàn)?/span>,所以在上必存在唯一的實(shí)數(shù),使得.

所以,,為增函數(shù),

,,為減函數(shù).

要證明上單調(diào)遞增,只需證明即可.

又因?yàn)?/span>,所以

即證即可.

設(shè),,所以為減函數(shù).

當(dāng)時(shí),,,即,

即證,

所以上單調(diào)遞增.

)先證明時(shí),.

設(shè),,

因?yàn)?/span>,所以為增函數(shù).

所以,即.

再證明函數(shù)的最大值.

因?yàn)?/span>,所以,.

因?yàn)?/span>,所以.

所以.

下面證,令,則,

即證,,.

設(shè),

所以函數(shù)為增函數(shù).

當(dāng)時(shí),,即.

即證:.

設(shè),

當(dāng)時(shí),,

為減函數(shù),所以上有唯一零點(diǎn).

當(dāng)時(shí),,,且為增函數(shù).

①當(dāng)時(shí),,即,所以上沒(méi)有零點(diǎn).

②當(dāng)時(shí),,即,所以上有唯一零點(diǎn).

綜上所述:當(dāng)時(shí),方程上的實(shí)數(shù)解的個(gè)數(shù)為,

當(dāng)時(shí),方程上的實(shí)數(shù)解的個(gè)數(shù)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某百貨商店今年春節(jié)期間舉行促銷(xiāo)活動(dòng),規(guī)定消費(fèi)達(dá)到一定標(biāo)準(zhǔn)的顧客可進(jìn)行一次抽獎(jiǎng)活動(dòng),隨著抽獎(jiǎng)活動(dòng)的有效開(kāi)展,參與抽獎(jiǎng)活動(dòng)的人數(shù)越來(lái)越多,該商店經(jīng)理對(duì)春節(jié)前天參加抽獎(jiǎng)活動(dòng)的人數(shù)進(jìn)行統(tǒng)計(jì),表示第天參加抽獎(jiǎng)活動(dòng)的人數(shù),得到統(tǒng)計(jì)表格如下:

1

2

3

4

5

6

7

5

8

8

10

14

15

17

(1)經(jīng)過(guò)進(jìn)一步統(tǒng)計(jì)分析,發(fā)現(xiàn)具有線性相關(guān)關(guān)系.請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(2)該商店規(guī)定:若抽中“一等獎(jiǎng)”,可領(lǐng)取600元購(gòu)物券;抽中“二等獎(jiǎng)”可領(lǐng)取300元購(gòu)物券;抽中“謝謝惠顧”,則沒(méi)有購(gòu)物券.已知一次抽獎(jiǎng)活動(dòng)獲得“一等獎(jiǎng)”的概率為,獲得“二等獎(jiǎng)”的概率為.現(xiàn)有張、王兩位先生參與了本次活動(dòng),且他們是否中獎(jiǎng)相互獨(dú)立,求此二人所獲購(gòu)物券總金額的分布列及數(shù)學(xué)期望.

參考公式:,,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平行四邊形中,過(guò)點(diǎn)作的垂線交的延長(zhǎng)線于點(diǎn),.連結(jié)于點(diǎn),如圖1,將沿折起,使得點(diǎn)到達(dá)點(diǎn)的位置.如圖2.

證明:直線平面

的中點(diǎn),的中點(diǎn),且平面平面求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,圓的方程為.以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求的交點(diǎn)的極坐標(biāo);

2)設(shè)的一條直徑,且不在軸上,直線兩點(diǎn),直線兩點(diǎn),求四邊形的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為t為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos.

1)求曲線C和直線l的直角坐標(biāo)方程;

2)若直線l交曲線CA,B兩點(diǎn),交x軸于點(diǎn)P,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知橢圓經(jīng)過(guò),且右焦點(diǎn)坐標(biāo)為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)A,B為橢圓的左,右頂點(diǎn),C為橢圓的上頂點(diǎn),P為橢圓上任意一點(diǎn)(異于A,B兩點(diǎn)),直線AC與直線BP相交于點(diǎn)M,直線BC與直線AP相交于點(diǎn)N,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱柱中;

已知三個(gè)論斷:(1)四棱柱是直四棱柱;(2)底面是菱形;(3

以其中兩個(gè)論斷作條件,余下一個(gè)為結(jié)論,可以得到三個(gè)命題,其中有幾個(gè)是真命題?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)高一、高二、高三年級(jí)的學(xué)生人數(shù)之比依次為657,防疫站欲對(duì)該校學(xué)生進(jìn)行身體健康調(diào)查,用分層抽樣的方法從該校高中三個(gè)年級(jí)的學(xué)生中抽取容量為n的樣本,樣本中高三年級(jí)的學(xué)生有21人,則n等于(

A.35B.45C.54D.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表為2016年至2019年某百貨零售企業(yè)的線下銷(xiāo)售額(單位:萬(wàn)元),其中年份代碼年份

年份代碼

1

2

3

4

線下銷(xiāo)售額

95

165

230

310

1)已知具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程,并預(yù)測(cè)2020年該百貨零售企業(yè)的線下銷(xiāo)售額;

2)隨著網(wǎng)絡(luò)購(gòu)物的飛速發(fā)展,有不少顧客對(duì)該百貨零售企業(yè)的線下銷(xiāo)售額持續(xù)增長(zhǎng)表示懷疑,某調(diào)查平臺(tái)為了解顧客對(duì)該百貨零售企業(yè)的線下銷(xiāo)售額持續(xù)增長(zhǎng)的看法,隨機(jī)調(diào)查了55位男顧客、50位女顧客(每位顧客從持樂(lè)觀態(tài)度持不樂(lè)觀態(tài)度中任選一種),其中對(duì)該百貨零售企業(yè)的線下銷(xiāo)售額持續(xù)增長(zhǎng)持樂(lè)觀態(tài)度的男顧客有10人、女顧客有20人,能否在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為對(duì)該百貨零售企業(yè)的線下銷(xiāo)售額持續(xù)增長(zhǎng)所持的態(tài)度與性別有關(guān)?

參考公式及數(shù)據(jù):

查看答案和解析>>

同步練習(xí)冊(cè)答案