【題目】第十四屆全國冬季運動會召開期間,某校舉行了冰上運動知識競賽,為了解本次競賽成績情況,從中隨機抽取部分學生的成績(得分均為整數(shù),滿分100)進行統(tǒng)計,請根據(jù)頻率分布表中所提供的數(shù)據(jù),解答下列問題:

1)求的值及隨機抽取一考生其成績不低于70分的概率;

2)若從成績較好的3、4、5組中按分層抽樣的方法抽取5人參加普及冰雪知識志愿活動,并指定2名負責人,求從第4組抽取的學生中至少有一名是負責人的概率.

組號

分組

頻數(shù)

頻率

1

15

0.15

2

35

0.35

3

b

0.20

4

20

5

10

0.1

合計

1.00

【答案】1,;(2

【解析】

1)根據(jù)第1組的頻數(shù)和頻率求出,根據(jù)頻數(shù)、頻率、的關系分別求出,進而求出不低于70分的概率;

(2)由(1)得,根據(jù)分層抽樣原則,分別從抽出2人,2人,1人,并按照所在組對抽出的5人編號,列出所有2名負責人的抽取方法,得出第4組抽取的學生中至少有一名是負責人的抽法數(shù),由古典概型概率公式,即可求解.

1,,,

由頻率分布表可得成績不低于70分的概率約為:

2)因為第3、4、5組共有50名學生,

所以利用分層抽樣在50名學生中抽取5名學生,每組分別為:

3組:人,第4組:人,第5組:人,

所以第34、5組分別抽取2人,2人,1

設第3組的3位同學為,第4組的2位同學為、,

5組的1位同學為,則從五位同學中抽兩位同學有10種可能抽法如下:

,,,,,

,,

其中第4組的2位同學、至少有一位同學是負責人有7種抽法,

故所求的概率為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某產品的廣告支出(單位:萬元)與銷售收入(單位:萬元)之間有下表所對應的數(shù)據(jù):

廣告支出(單位:萬元)

1

2

3

4

銷售收入(單位:萬元)

12

28

42

56

1)畫出表中數(shù)據(jù)的散點圖;

2)求出的線性回歸方程;

3)若廣告費為9萬元,則銷售收入約為多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】先后2次拋擲一枚骰子,將得到的點數(shù)分別記為,.

(1)求直線與圓相切的概率;

(2)將,,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平行四邊形中,,,,是線段的中點,現(xiàn)沿進行翻折,使得重合,得到如圖所示的四棱錐.

1)證明:平面;

2)若是等邊三角形,求平面和平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在棱長均相等的正三棱柱中,的中點,上,且,則下述結論:①;②;③平面平面:④異面直線所成角為其中正確命題的個數(shù)為( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線上一點到其準線的距離為2.

(1)求拋物線的方程;

(2)如圖,,為拋物線上三個點,,若四邊形為菱形,求四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個口袋中裝有個白球和個黑球,下列事件中,是獨立事件的是(

A.第一次摸出的是白球與第一次摸出的是黑球

B.摸出后放回,第一次摸出的是白球,第二次摸出的是黑球

C.摸出后不放回,第一次摸出的是白球,第二次摸出的是黑球

D.一次摸兩個球,共摸兩次,第一次摸出顏色相同的球與第一次摸出顏色不同的球

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某重點中學高三的一名學生在高考前對他在高三近一年中的所有數(shù)學考試(含模擬考試、月考、平時訓練等各種類型的試卷)分數(shù)進行統(tǒng)計,以此來估計自己在高考中的大致分數(shù).為此,隨機抽取了若干份試卷作為樣本,根據(jù)此樣本數(shù)據(jù)作出如下頻率分布統(tǒng)計表和頻率分布直方圖.

分組

頻數(shù)

頻率

20

0.25

50

4

0.05

1)求表中的值和頻率分布直方圖中的值;

2)若同組中的每個數(shù)據(jù)用該組區(qū)間的中點值代替,試根據(jù)頻率分布直方圖求該學生高三年級數(shù)學考試分數(shù)的中位數(shù)和平均數(shù),并對該學生自己在高考中的數(shù)學成績進行預測.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓,點為半圓上一動點,若過作橢圓的兩切線分別交軸于、兩點.

1)求證:;

2)當時,求的取值范圍.

查看答案和解析>>

同步練習冊答案