【題目】如圖1,一個(gè)正四棱柱形的密閉容器底部鑲嵌了同底的正四棱錐形實(shí)心裝飾塊,容器內(nèi)盛有升水時(shí),水面恰好經(jīng)過(guò)正四棱錐的頂點(diǎn)P.如果將容器倒置,水面也恰好過(guò)點(diǎn)(圖2).有下列四個(gè)命題:

A.正四棱錐的高等于正四棱柱高的一半

B.將容器側(cè)面水平放置時(shí),水面也恰好過(guò)點(diǎn)

C.任意擺放該容器,當(dāng)水面靜止時(shí),水面都恰好經(jīng)過(guò)點(diǎn)

D.若往容器內(nèi)再注入升水,則容器恰好能裝滿

其中真命題的代號(hào)是: (寫出所有真命題的代號(hào)).

【答案】BD

【解析】

設(shè)圖(1)水的高度h2幾何體的高為h1

圖(2)中水的體積為b2h1-b2h2=b2h1-h2),

所以b2h2=b2h1-h2),所以h1=h2,故A錯(cuò)誤,D正確.

對(duì)于B,當(dāng)容器側(cè)面水平放置時(shí),P點(diǎn)在長(zhǎng)方體中截面上,

又水占容器內(nèi)空間的一半,所以水面也恰好經(jīng)過(guò)P點(diǎn),故B正確.

對(duì)于C,假設(shè)C正確,當(dāng)水面與正四棱錐的一個(gè)側(cè)面重合時(shí),

經(jīng)計(jì)算得水的體積為b2h2b2h2,矛盾,故C不正確.故選BD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正四棱柱的底面邊長(zhǎng)為2,側(cè)棱為上底面上的動(dòng)點(diǎn),給出下列四個(gè)結(jié)論:

①若PD=3,則滿足條件的P點(diǎn)有且只有一個(gè);

②若,則點(diǎn)P的軌跡是一段圓;

③若PD∥平面,則DP長(zhǎng)的最小值為2;

④若PD∥平面,且,則平面BDP截正四棱柱的外接球所得圖形的面積為

其中所有正確結(jié)論的序號(hào)為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某鄉(xiāng)鎮(zhèn)響應(yīng)“綠水青山就是金山銀山”的號(hào)召,因地制宜的將該鎮(zhèn)打造成“生態(tài)水果特色小鎮(zhèn)”.經(jīng)調(diào)研發(fā)現(xiàn):某珍稀水果樹(shù)的單株產(chǎn)量(單位:千克)與施用肥料(單位:千克)滿足如下關(guān)系:,肥料成本投入為元,其它成本投入(如培育管理、施肥等人工費(fèi))元.已知這種水果的市場(chǎng)售價(jià)大約為15元/千克,且銷路暢通供不應(yīng)求.記該水果樹(shù)的單株利潤(rùn)為(單位:元).

(Ⅰ)求的函數(shù)關(guān)系式;

(Ⅱ)當(dāng)施用肥料為多少千克時(shí),該水果樹(shù)的單株利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位擬建一個(gè)扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點(diǎn)為圓心的兩個(gè)同心圓弧和延長(zhǎng)后通過(guò)點(diǎn)的兩條直線段圍成.按設(shè)計(jì)要求扇環(huán)面的周長(zhǎng)為30米,其中大圓弧所在圓的半徑為10.設(shè)小圓弧所在圓的半徑為米,圓心角為(弧度).

1)求關(guān)于的函數(shù)關(guān)系式;

2)已知在花壇的邊緣(實(shí)線部分)進(jìn)行裝飾時(shí),直線部分的裝飾費(fèi)用為4/米,弧線部分的裝飾費(fèi)用為9/米.設(shè)花壇的面積與裝飾總費(fèi)用的比為,求關(guān)于的函數(shù)關(guān)系式,并求出為何值時(shí), 取得最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)討論極值點(diǎn)的個(gè)數(shù);

(2)若,不等式恒成立,當(dāng)為正數(shù)時(shí),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)求證: .

2)某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個(gè)式子的值都等于同一個(gè)常數(shù):

sin213°cos217°sin13°cos17°;

sin215°cos215°sin15°cos15°;

sin218°cos212°sin18°cos12°;

sin2(18°)cos248°sin(18°)cos48°;

sin2(25°)cos255°sin(25°)cos55°.

試從上述五個(gè)式子中選擇一個(gè),求出這個(gè)常數(shù);

根據(jù)的計(jì)算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為三角恒等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,直線.

1)求證:對(duì)直線與圓總有兩個(gè)不同的交點(diǎn);

2)是否存在實(shí)數(shù),使得圓上有四個(gè)點(diǎn)到直線的距離為?若存在,求出的范圍,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《周脾算經(jīng)》有記載:一年有二十四個(gè)節(jié)氣,每個(gè)節(jié)氣晷(gui)長(zhǎng)損益相同,晷是按照日影測(cè)定時(shí)刻的儀器,晷長(zhǎng)即所測(cè)定的影子的長(zhǎng)度,二十四節(jié)氣及晷長(zhǎng)變化如圖所示,相鄰兩個(gè)節(jié)氣晷長(zhǎng)變化量相同,周而復(fù)始,若冬至晷長(zhǎng)最長(zhǎng)是一丈三尺五寸,夏至晷長(zhǎng)最短是一尺五寸,(一丈等于10尺,一尺等于10寸),則秋分節(jié)氣的晷長(zhǎng)是(

A.七尺五寸B.二尺五寸C.五尺五寸D.四尺五寸

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓軸相切于點(diǎn)(0,3),圓心在經(jīng)過(guò)點(diǎn)(2,1)與點(diǎn)(﹣2,﹣3)的直線上.

(1)求圓的方程;

(2)圓與圓相交于M、N兩點(diǎn),求兩圓的公共弦MN的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案