【題目】在直角坐標系中,曲線的參數(shù)方程為(其中為參數(shù)),曲線的參數(shù)方程為(其中為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標系.

1)求曲線的極坐標方程;

2)射線與曲線,分別交于點,(且點均異于原點),當時,求的最小值.

【答案】(1)的極坐標方程為的極坐標方程為(2)

【解析】

(1)由題意首先將參數(shù)方程化為直角坐標方程,然后再化為極坐標方程即可;

(2)結(jié)合(1)中的參數(shù)方程首先求得的表達式,然后結(jié)合均值不等式即可求得的最小值.

1)曲線的普通方程為,令,

可得的極坐標方程為,

曲線的普通方程為,令,,

可得的極坐標方程為.

2)聯(lián)立的極坐標方程得

聯(lián)立的極坐標方程得,

(當且僅當時取等號).

所以的最小值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐PABC中,△PAC為等腰直角三角形,為正三角形,DA的中點,AC=2

(1)證明:PBAC

(2)若三棱錐的體積為,求二面角APCB的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列,滿足:

1)若,求數(shù)列的通項公式;

2)若,且

,求證:數(shù)列為等差數(shù)列;

若數(shù)列中任意一項的值均未在該數(shù)列中重復(fù)出現(xiàn)無數(shù)次,求首項應(yīng)滿足的條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】春節(jié)來臨之際,某超市為了確定此次春節(jié)年貨的進貨方案,統(tǒng)計去年春節(jié)前后50天年貨的日銷售量(單位:kg),得到如圖所示的頻率分布直方圖.

(1)求這50天超市日銷售量的平均數(shù);(視頻率為概率,以各組區(qū)間的中點值代表該組的值)

(2)先從日銷售在,內(nèi)的天數(shù)中,按分層抽樣隨機抽取4天進行比較研究,再從中選2天,求這2天的日銷售量都在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)點,分別是橢圓:的左、右焦點,且橢圓上的點到點的距離的最小值為.M、N是橢圓上位于軸上方的兩點,且向量與向量平行.

1)求橢圓的方程;

2)當時,求△的面積;

3)當時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,,且),數(shù)列滿足,,對任意,都有;

1)求數(shù)列、的通項公式;

2)令,若對任意的,不等式恒成立,求實數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,對于任意滿足,且,數(shù)列滿足,,其前項和為.

1)求數(shù)列、的通項公式;

2)令,數(shù)列的前項和為,求證:對于任意正整數(shù),都有;

3)將數(shù)列、的項按照“當為奇數(shù)時,放在前面”,“當為偶數(shù)時,放在前面”的要求進行“交叉排列”得到一個新的數(shù)列:、、、、、求這個新數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若關(guān)于的不等式上恒成立,求的取值范圍;

(Ⅱ)設(shè)函數(shù),在(Ⅰ)的條件下,試判斷上是否存在極值.若存在,判斷極值的正負;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】華東師大二附中樂東黃流中學位于我國南海邊,有一片美麗的沙灘和一彎天然的海濱浴場.如圖,海岸線MAN,,(海岸線MAN上方是大海),現(xiàn)用長為BC的欄網(wǎng)圍成一個三角形學生游泳場所,其中.

1)若,求三角形游泳場所面積最大值;

2)若BC=600,,由于學生人數(shù)的增加需要擴大游泳場所面積,現(xiàn)在折線MBCN上方選點D,現(xiàn)用長為BD,DC的欄圍成一個四邊形游泳場所DBAC,使,求四邊形游泳場所DBAC的最大面積.

查看答案和解析>>

同步練習冊答案