精英家教網 > 高中數學 > 題目詳情
交于A、B兩點,且,則直線AB的方程為:                                (  )
A、                                                    B、
C、                                                    D、
C
解此題具有很大的迷惑性,注意題目隱含直線AB的方程就是,它過定點(0,2),只有C項滿足。故選C。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本題滿分12分)已知橢圓E:(其中),直 線L與橢圓只有一個公共點T;兩條平行于y軸的直線分別過橢圓的左、右焦點F1、F2,且直線L分別相交于A、B兩點.

(Ⅰ)若直線L在軸上的截距為,求證:直線L斜率的絕對值與橢圓E的離心率相等;(Ⅱ)若的最大值為1200,求橢圓E的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

橢圓的焦距是2,則m的值為                              (    )
A.6B.9C.6或4D.9或1

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)如圖,中心在原點O的橢圓的右焦點為F(3,0),
右準線l的方程為:x = 12。
(1)求橢圓的方程;(4分)
(2)在橢圓上任取三個不同點,使
證明: 為定值,并求此定值。(8分)


 
 

 

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,已知直線的右焦點F,且交橢圓CA,B兩點,點A,FB在直線上的射影依次為點D,K,E.
(1)若拋物線的焦點為橢圓C的上頂點,求橢圓C的方程;
(2)對于(1)中的橢圓C,若直線Ly軸于點M,且,當m變化時,求的值;
(3)連接AE,BD,試探索當m變化時,直線AE、BD是否相交于一定點N?若交于定點N,請求出N點的坐標,并給予證明;否則說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知圓,坐標原點為O.圓C上任意一點A在x軸上的射影為點B,已知向量.
(1)求動點Q的軌跡E的方程;
(2)當時,設動點Q關于x軸的對稱點為點P,直線PD交軌跡E于點F(異于P點),證明:直線QF與x軸交于定點,并求定點坐標.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

化簡方程+=10為不含根式的形式是(    )
A.+="1"B.+=1
C.+="1"D.+=1

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

.“神舟”五號飛船運行軌道是以地球的中心F為焦點的橢圓,測得近地點A距地面為m km,遠地點B距地面為n km,設地球半徑為R km,關于橢圓有以下說法:
①焦距長為n-m;
②短軸長為;
③離心率為e=;
④以AB方向為x軸的正方向,F為坐標原點,則左準線方程為x=-.
以上說法正確的有__________________(填上所有你認為正確說法的序號).

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知橢圓方程為,則這個橢圓的焦距為(     )
A.6B.2C.D.

查看答案和解析>>

同步練習冊答案