已知圓C以C(t,
2t
)(t∈R,t≠0)
為圓心且經(jīng)過原點O.
(1)若t=2,寫出圓C的方程;
(2)在(1)的條件下,已知點B的坐標為(0,2),設(shè)P,Q分別是直線l:x+y+2=0和圓C上的動點,求|PB|+|PQ|的最小值及此時點P的坐標.
分析:(1)直接代入可得圓的方程;
(2)求出點B關(guān)于直線x+y+2=0的對稱點,將已知問題轉(zhuǎn)化為對稱點到圓上的最小值問題,根據(jù)圓的幾何條件,圓外的點到圓上的點的最小值等于該點到圓心的距離減去半徑.
解答:解:(1)由題知,圓C方程為(x-t)2+(y-
2
t
)2=t2+
4
t2

所以t=2,圓方程為(x-2)2+(y-1)2=5
(2)點B(0,2)關(guān)于直線x+y+2=0的對稱點為B′(-4,-2),
則|PB|+|PQ|=|PB′|+|PQ|≥|B′Q|,
又B′到圓上點Q的最短距離為|BC|-r=3
5
-
5
=2
5

所以|PB|+|PQ|的最小值為2
5
,
直線B′C的方程為y=
1
2
x

則直線B′C與直線x+y+2=0的交點P的坐標為(-
4
3
,-
2
3
)
點評:本題考查圓的方程,考查對稱性,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知圓C以(3,-1)為圓心,5為半徑,過點S(0,4)作直線l與圓C交于不同兩點A,B.
(Ⅰ)若AB=8,求直線l的方程;
(Ⅱ)當直線l的斜率為-2時,過直線l上一點P,作圓C的切線PT(T為切點)使PS=PT,求點P的坐標;
(Ⅲ)設(shè)AB的中點為N,試在平面上找一點M,使MN的長為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C以C(t,
2t
)(t∈R,t≠0)
為圓心且經(jīng)過原點O.
(Ⅰ)若直線2x+y-4=0與圓C交于點M,N,若|OM|=|ON|,求圓C的方程;
(Ⅱ)在(Ⅰ)的條件下,已知點B的坐標為(0,2),設(shè)P,Q分別是直線l:x+y+2=0和圓C上的動點,求|PB|+|PQ|的最小值及此時點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•湛江二模)已知直線l的參數(shù)方程為
x=
3
t
y=t
(t為參數(shù)),則此直線的傾斜角α=
π
6
π
6
;又半徑為2,經(jīng)過原點O的圓C,其圓心在第一象限并且在直線l上,若以O(shè)為極點,x軸的正半軸為極軸建立極坐標系,則圓C的極坐標方程為
ρ=4cos(θ-
π
6
)
ρ=4cos(θ-
π
6
)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓C以C(t,
2
t
)(t∈R,t≠0)
為圓心且經(jīng)過原點O.
(Ⅰ)若直線2x+y-4=0與圓C交于點M,N,若|OM|=|ON|,求圓C的方程;
(Ⅱ)在(Ⅰ)的條件下,已知點B的坐標為(0,2),設(shè)P,Q分別是直線l:x+y+2=0和圓C上的動點,求|PB|+|PQ|的最小值及此時點P的坐標.

查看答案和解析>>

同步練習冊答案