精英家教網 > 高中數學 > 題目詳情
已知f(x)是定義在R上的偶函數,且對任意x∈R,都有f(x)=f(x+4),當x∈[4,6]時,f(x)=2x+1,則函數f(x)在區(qū)間[-2,0]上的反函數f-1(x)的值f-1(19)=( )
A.3-2log23
B.-1-2log23
C.5+log23
D.log215
【答案】分析:利用函數的奇偶性、周期性及反函數,把要求的函數的自變量轉化到所給的區(qū)間x∈[4,6],即可計算出要求的值.
解答:解:設f-1(19)=a∈[-2,0],則f(a)=19,
∵a∈[-2,0],∴-a∈[0,2],∴(-a+4)∈[4,6],
又已知f(x)是定義在R上的偶函數,∴f(a)=f(-a),
∵對任意x∈R,都有f(x)=f(x+4),∴f(-a)=f(-a+4),
而當x∈[4,6]時,f(x)=2x+1,
∴f(-a+4)=2-a+4+1,
∴2-a+4+1=19,即2-a+4=18,即-a+4=log218,
而log218=1+2log23,
∴-a+4=1+2log23,
∴a=3-2log23.
故選A.
點評:本題綜合考查了函數的奇偶性、周期性及反函數,準確理解以上有關定義及性質是解決問題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f(x)是定義在(-4,4)上的奇函數,它在定義域內單調遞減 若a滿足f(1-a)+f(2a-3)小于0,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)是定義在[-1,1]上的奇函數,且f(1)=1,若a,b∈[-1,1],a+b≠0時,都有
f(a)+f(b)
a+b
>0

(1)證明函數a=1在f(x)=-x2+x+lnx上是增函數;
(2)解不等式:f(
1
x-1
)>0,x∈(0,+∞);
(3)若f′(x)=-2x+1+
1
x
=-
2x2-x-1
x
對所有f'(x)=0,任意x=-
1
2
恒成立,求實數x=1的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

8、已知f(x)是定義在R上的函數,f(1)=1,且對任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,則g(2009)=(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)是定義在實數集R上的增函數,且f(1)=0,函數g(x)在(-∞,1]上為增函數,在[1,+∞)上為減函數,且g(4)=g(0)=0,則集合{x|f(x)g(x)≥0}=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)是定義在(-∞,+∞)上的偶函數,且在(-∞,0)上是增函數,設a=f(log47),b=f(log
12
3)
,c=f(0.2-0.6),則a,b,c的大小關系
a>b>c
a>b>c

查看答案和解析>>

同步練習冊答案