【題目】直線lxty+10t0)和拋物線Cy24x相交于不同兩點(diǎn)AB,設(shè)AB的中點(diǎn)為M,拋物線C的焦點(diǎn)為F,以MF為直徑的圓與直線l相交另一點(diǎn)為N,且滿足|MN||NF|,則直線l的方程為_____.

【答案】xy+10

【解析】

求得拋物線的焦點(diǎn)F,聯(lián)立直線l和拋物線的方程,運(yùn)用韋達(dá)定理和中點(diǎn)坐標(biāo)公式可得M的坐標(biāo),設(shè)Nty01,y0),由NFl,結(jié)合兩直線垂直的條件,可得ty0的關(guān)系式,再由兩點(diǎn)的距離公式,化簡(jiǎn)整理可得t,可得所求直線方程.

y24x的焦點(diǎn)為F10),聯(lián)立xty+10y24x,可得y24ty+40

設(shè)Ax1,y1),Bx2,y2),

可得y1+y24t,則中點(diǎn)M2t21,2t),

設(shè)Nty01,y0),由NFl,可得t,即有y0

|MN||NF|可得,

即為,

結(jié)合,整理可得t627,解得t

可得直線l的方程為xy+10.

故答案為:xy+10.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的一個(gè)焦點(diǎn)坐標(biāo)為,一條斜率為的直線分別交軸于點(diǎn),交橢圓于點(diǎn),且點(diǎn)三等分

1)求該橢圓的方程;

2)若是第一象限內(nèi)橢圓上的點(diǎn),其橫坐標(biāo)為2,過(guò)點(diǎn)的兩條不同的直線分別交橢圓于點(diǎn),且直線的斜率之積,求證:直線恒過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】回文數(shù)指從左向右讀與從右向左讀都一樣的正整數(shù),如22343,122194249等.顯然兩位回文數(shù)有9個(gè),即11,2233,99;三位回文數(shù)有90個(gè),即101121,131,…,191,202,…,999.則四位回文數(shù)有______個(gè),位回文數(shù)有______個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知過(guò)點(diǎn)的曲線的方程為

(Ⅰ)求曲線的標(biāo)準(zhǔn)方程:

(Ⅱ)已知點(diǎn)為直線上任意一點(diǎn),過(guò)的垂線交曲線于點(diǎn),

(。┳C明:平分線段(其中為坐標(biāo)原點(diǎn));

(ⅱ)求最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)是定義在R上的偶函數(shù),且在[0,+∞)上單調(diào)遞減,f2)=0,則不等式flog2x)>0的解集為(

A.4B.2,2C.+∞)D.4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fxx2+ax+lnxaR

1)討論函數(shù)fx)的單調(diào)性;

2)若fx)存在兩個(gè)極值點(diǎn)x1,x2|x1x2|,求|fx1)﹣fx2|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為是參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸

為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(Ⅰ)求直線的普通方程與曲線的直角坐標(biāo)方程;

(Ⅱ)設(shè)點(diǎn)在曲線上,曲線在點(diǎn)處的切線與直線垂直,求點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐,底面為矩形,,,中點(diǎn),

1)求證:平面平面

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),函數(shù)的圖象在點(diǎn)處的切線方程為.

1)討論的導(dǎo)函數(shù)的零點(diǎn)的個(gè)數(shù);

2)若,且上的最小值為,證明:當(dāng)時(shí),.

查看答案和解析>>

同步練習(xí)冊(cè)答案