已知函數(shù)f(x)=ax2+bx+1(a≠0)對于任意x∈R都有f(1+x)=f(1-x),且函數(shù)y=f(x)+2x為偶函數(shù);函數(shù)g(x)=1-2x
(I) 求函數(shù)f(x)的表達(dá)式;
(II) 求證:方程f(x)+g(x)=0在區(qū)間[0,1]上有唯一實(shí)數(shù)根;
(III) 若有f(m)=g(n),求實(shí)數(shù)n的取值范圍.
分析:(I)根據(jù)對于任意x∈R都有f(1+x)=f(1-x)可知對稱軸為x=1,由此得a,b的方程,再由y=f(x)+2x為偶函數(shù)可求得b值,從而求得a值;
(II)設(shè)h(x)=f(x)+g(x),方程f(x)+g(x)=0在區(qū)間[0,1]上有唯一實(shí)數(shù)根轉(zhuǎn)化為證明函數(shù)h(x)在[0,1]上有唯一零點(diǎn),根據(jù)零點(diǎn)存在定理判定其存在性,利用單調(diào)性判定其唯一性;
(III)求出f(x),g(x)的值域及其交集,據(jù)f(m)=g(n)知g(n)屬于該交集;
解答:(I)解:∵對于任意x∈R都有f(1+x)=f(1-x),
∴函數(shù)f(x)的對稱軸為x=1,得b=-2a.
又函數(shù)y=f(x)+2x=ax2+(b+2)x+1為偶函數(shù),
∴b=-2,從而可得a=1.
∴f(x)=x2-2x+1=(x-1)2
(II)證明:設(shè)h(x)=f(x)+g(x)=(x-1)2+1-2x,
∵h(yuǎn)(0)=2-20=1>0,h(1)=-1<0,
∴h(0)h(1)<0.
∴函數(shù)h(x)在區(qū)間[0,1]內(nèi)必有零點(diǎn),
又∵(x-1)2,-2x在區(qū)間[0,1]上均單調(diào)遞減,
所以h(x)在區(qū)間[0,1]上單調(diào)遞減,
∴h(x)在區(qū)間[0,1]上存在唯一零點(diǎn).
故方程f(x)+g(x)=0在區(qū)間[0,1]上有唯一實(shí)數(shù)根.
(III)解:由題可知∴f(x)=(x-1)2≥0.g(x)=1-2x<1,
若有f(m)=g(n),則g(n)∈[0,1),
則1-2n≥0,解得 n≤0.
故n的取值范圍是n≤0.
點(diǎn)評:本題考查根的存在性及根的個數(shù)判斷,考查函數(shù)奇偶性的性質(zhì),考查學(xué)生對問題的理解能力及轉(zhuǎn)化能力,零點(diǎn)存在定理及二次函數(shù)的有關(guān)性質(zhì)是解決問題的基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習(xí)冊答案