【題目】已知橢圓的左頂點為,右焦點為,過作垂直于軸的直線交該橢圓于,兩點,直線的斜率為.

(Ⅰ)求橢圓的離心率;

(Ⅱ)若的外接圓在處的切線與橢圓交另一點于,且的面積為,求橢圓的方程.

【答案】(Ⅰ);(Ⅱ).

【解析】

(Ⅰ)先求出左頂點為,右焦點為的坐標,由題意求出的坐標,由斜率公式,根據(jù)直線的斜率為,這樣可以求出橢圓的離心率;

(Ⅱ)由(Ⅰ),可設出,設的外接圓的圓心坐標為,由,得,求得,求得切線方程,代入橢圓方程,求出,利用點到直線距離和三角形面積公式,代入可求出,求出的值,求得橢圓方程.

(Ⅰ)由題意可知:,設,由題意可知:M在第一象限,且

,;

(Ⅱ)由(Ⅰ), ,所以橢圓方程為:

,設的外接圓的圓心坐標為,由,得,求得,,切線斜率為:,切線直線方程為,即代入橢圓方程中,,,

到直線的距離,的面積為,所以有

,橢圓方程為:.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的上下兩個焦點分別為, ,過點軸垂直的直線交橢圓、兩點, 的面積為,橢圓的離心力為

(Ⅰ)求橢圓的標準方程;

(Ⅱ)已知為坐標原點,直線 軸交于點,與橢圓交于, 兩個不同的點,若存在實數(shù),使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】孝感市某中學為了解中學生的課外閱讀時間,決定在該中學的1200名男生和800名女生中用分層抽樣的方法抽取20名學生,對他們的課外閱讀時間進行問卷調查.現(xiàn)在按課外閱讀時間的情況將學生分成三類:類(不參加課外閱讀),類(參加課外閱讀,但平均每周參加課外閱讀的時間不超過3小時),類(參加課外閱讀,且平均每周參加課外閱讀的時間超過3小時).調查結果如表:

男生

5

3

女生

3

3

1)求出表中的值;

2)根據(jù)表中的統(tǒng)計數(shù)據(jù),完成下面的列聯(lián)表,井判斷是否有90%的把握認為“參加閱讀與否”與性別有關;

男生

女生

總計

不參加課外閱讀

參課外閱讀

總計

3)從抽出的女生中再隨機抽取3人進一步了解情況,記X為抽取的這3名女生中A類女生人數(shù),求X的數(shù)學期望.

附:.

0.10

0.05

0.01

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,頂點在底面上的射影在棱上,,,,的中點。

(Ⅰ)求證:

(Ⅱ)求二面角的余弦值;

(Ⅲ)已知是平面內一點,點中點,且平面,求線段的長。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,長方體ABCDA1B1C1D1中,ADAA11,AB2,點E是線段AB中點.

1)證明:D1ECE

2)求二面角D1ECD的大小的余弦值;

3)求A點到平面CD1E的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若函數(shù)恰好有兩個零點,則實數(shù)等于為自然對數(shù)的底數(shù))(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面,,,.為線段上的點.

(I)證明:

(Ⅱ)若的中點,求與平面所成的角的正弦值;

(Ⅲ)若滿足,求二面角正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,圓Ox軸于點F1,F2,交y軸于點B1,B2.以B1,B2為頂點,F1,F2分別為左、右焦點的橢圓E,恰好經(jīng)過點

1)求橢圓E的標準方程;

2)設經(jīng)過點(﹣20)的直線l與橢圓E交于M,N兩點,求△F2MN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商店為了更好地規(guī)劃某種商品進貨的量,該商店從某一年的銷售數(shù)據(jù)中,隨機抽取了組數(shù)據(jù)作為研究對象,如下表所示((噸)為該商品進貨量,(天)為銷售天數(shù)):

2

3

4

5

6

8

9

11

1

2

3

3

4

5

6

8

(Ⅰ)根據(jù)上表提供的數(shù)據(jù),求出關于的線性回歸方程

(Ⅱ)在該商品進貨量(噸)不超過(噸)的前提下任取兩個值,求該商品進貨量(噸)恰有一個值不超過(噸)的概率.

參考公式和數(shù)據(jù):.,.

查看答案和解析>>

同步練習冊答案