【題目】某地區(qū)有小學(xué)21所,中學(xué)14所,大學(xué)7所,現(xiàn)采用分層抽樣的方法從這些學(xué)校中抽取6所學(xué)校對學(xué)生進(jìn)行視力調(diào)查.
(1)求應(yīng)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目;
(2)若從抽取的6所學(xué)校中隨機(jī)抽取2所學(xué)校做進(jìn)一步數(shù)據(jù)分析. (。┝谐鏊锌赡艿某槿〗Y(jié)果;
(ⅱ)求抽取的2所學(xué)校均為小學(xué)的概率.

【答案】
(1)解:抽樣比為 = ,

故應(yīng)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目分別為21× =3,14× =2,7× =1


(2)解:(i)在抽取到的6所學(xué)校中,3所小學(xué)分別記為1、2、3,兩所中學(xué)分別記為a、b,大學(xué)記為A

則抽取2所學(xué)校的所有可能結(jié)果為{1,2},{1,3},{1,a},{1,b},{1,A},{2,3},{2,a},{2,b},{2,A},{3,a},{3,b},{3,A},{a,b},{a,A},{b,A},共15種

(ii)設(shè)B={抽取的2所學(xué)校均為小學(xué)},事件B的所有可能結(jié)果為{1,2},{1,3},{2,3}共3種,

∴P(B)= =


【解析】(1)利用分層抽樣的意義,先確定抽樣比,在確定每層中抽取的學(xué)校數(shù)目;(2)(i)從抽取的6所學(xué)校中隨機(jī)抽取2所學(xué)校,所有結(jié)果共有 =15種,按規(guī)律列舉即可;(ii)先列舉抽取結(jié)果兩所學(xué)校均為小學(xué)的基本事件數(shù),再利用古典概型概率的計(jì)算公式即可得結(jié)果

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠修建一個長方體形無蓋蓄水池,其容積為4800立方米,深度為3米.池底每平方米的造價為150元,池壁每平方米的造價為120元.設(shè)池底長方形長為x米.
(Ⅰ)求底面積并用含x的表達(dá)式表示池壁面積;
(Ⅱ)怎樣設(shè)計(jì)水池能使總造價最低?最低造價是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位要在800名員工中抽去80名員工調(diào)查職工身體健康狀況,其中青年員工400名,中年員工300名,老年員工100名,下列說法錯誤的是(
A.老年人應(yīng)作為重點(diǎn)調(diào)查對象,故抽取的老年人應(yīng)超過40名
B.每個人被抽到的概率相同為
C.應(yīng)使用分層抽樣抽取樣本調(diào)查
D.抽出的樣本能在一定程度上反映總體的健康狀況

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時,證明:對任意的,有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=(2x﹣2)2+(2﹣x+2)2﹣10在區(qū)間[1,2]上的最大值與最小值之積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|2≤2x≤4},B={x|0<log2x<2},則A∪B=(
A.[1,4]
B.[1,4)
C.(1,2)
D.[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,平面內(nèi)有三個向量 , ,其中 的夾角為30°, 的夾角為90°,且| |=2,| |=2,| |=2 ,若 ,(λ,μ∈R)則(
A.λ=4,μ=2
B.λ=4,μ=1
C.λ=2,μ=1
D.λ=2,μ=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AA1=BC=2AC=2. (Ⅰ)若D為AA1中點(diǎn),求證:平面B1CD⊥平面B1C1D;
(Ⅱ)在AA1上是否存在一點(diǎn)D,使得二面角B1﹣CD﹣C1的大小為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】惠城某影院共有100個座位,票價不分等次.根據(jù)該影院的經(jīng)營經(jīng)驗(yàn),當(dāng)每張標(biāo)價不超過10元時,票可全部售出;當(dāng)每張票價高于10元時,每提高1元,將有3張票不能售出.為了獲得更好的收益,需給影院定一個合適的票價,符合的基本條件是: ①為方便找零和算帳,票價定為1元的整數(shù)倍;
②影院放映一場電影的成本費(fèi)用支出為575元,票房收入必須高于成本支出.
用x(元)表示每張票價,用y(元)表示該影院放映一場的凈收入(除去成本費(fèi)用支出后的收入).
(Ⅰ)把y表示成x的函數(shù),并求其定義域;
(Ⅱ)試問在符合基本條件的前提下,每張票價定為多少元時,放映一場的凈收入最多?

查看答案和解析>>

同步練習(xí)冊答案