精英家教網(wǎng)如圖,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,以該橢圓上的點和橢圓的左、右焦點F1,F(xiàn)2為頂點的三角形的周長為4(
2
+1),一等軸雙曲線的頂點是該橢圓的焦點,設(shè)P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D.
(Ⅰ)求橢圓和雙曲線的標準方程;
(Ⅱ)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明k1•k2=1;
(Ⅲ)(此小題僅理科做)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值;若不存在,請說明理由.
分析:(Ⅰ)由題意知,橢圓離心率為
c
a
=
2
2
,及橢圓的定義得到又2a+2c=4(
2
+1)
,解方程組即可求得橢圓的方程,等軸雙曲線的頂點是該橢圓的焦點可求得該雙曲線的方程;
(Ⅱ)設(shè)點P(x0,y0),根據(jù)斜率公式求得k1、k2,把點P(x0,y0)在雙曲線上,即可證明結(jié)果;
(Ⅲ)設(shè)直線AB的方程為y=k(x+2),則可求出直線CD的方程為y=
1
k
(x-2),聯(lián)立直線和橢圓方程,利用韋達定理,即可求得|AB|,|CD|,代入|AB|+|CD|=λ|AB|•|CD|,求得λ的值.
解答:解:(Ⅰ)由題意知,橢圓離心率為
c
a
=
2
2

a=
2
c
,又2a+2c=4(
2
+1)
,
所以可解得a=2
2
,c=2,所以b2=a2-c2=4,
所以橢圓的標準方程為
x2
8
+
y2
4
=1
;
所以橢圓的焦點坐標為(±2,0),
因為雙曲線為等軸雙曲線,且頂點是該橢圓的焦點,
所以該雙曲線的標準方程為
x2
4
-
y2
4
=1

(Ⅱ)設(shè)點P(x0,y0),
則k1=
y0
x0+2
,k2=
y0
x0-2
,
∴k1•k2=
y0
x0+2
y0
x0-2
=
y02
x02-4
,
又點P(x0,y0)在雙曲線上,
x02
4
-
y02
4
=1
,即y02=x02-4,
∴k1•k2=
y02
x02-4
=1.
(Ⅲ)假設(shè)存在常數(shù)λ,使得得|AB|+|CD|=λ|AB|•|CD|恒成立,
則由(II)知k1•k2=1,
∴設(shè)直線AB的方程為y=k(x+2),則直線CD的方程為y=
1
k
(x-2),
由方程組
y=k(x+2)
x2
8
+
y2
4
=1
消y得:(2k2+1)x2+8k2x+8k2-8=0,
設(shè)A(x1,y1),B(x2,y2),
則由韋達定理得,x1+x2=
-8k2
1+2k2
x1x2=
8k2-8
2k2+1
,
∴AB=
1+k2
(x1+x2)2-4xx2
=
4
2
(1+k2)
2k2+1
,
同理可得CD=
1+(
1
k
)
2
(x1+x2)2-4x1x2
=
4
2
(1+
1
k2
)
2
1
k2
+1
=
4
2
(1+k2)
k2+2
,
∵|AB|+|CD|=λ|AB|•|CD|,
∴λ=
1
|AB|
+
1
|CD|
=
4
2
(1+k2)
2k2+1
-
4
2
(1+k2)
k2+2
=
3+3k2
4
2
(k2+1)
=
3
2
8

∴存在常數(shù)λ=
3
2
8
,使得|AB|+|CD|=λ|AB|•|CD|恒成立.
點評:本題考查了橢圓的定義、離心率、橢圓與雙曲線的標準方程、直線與圓錐曲線的位置關(guān)系,是一道綜合性的試題,考查了學(xué)生綜合運用知識解決問題的能力.其中問題(III)是一個開放性問題,考查了同學(xué)們觀察、推理以及創(chuàng)造性地分析問題、解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
過點C(
3
2
,
3
2
)
且離心率為
6
3
,A、B是長軸的左右兩頂點,P為橢圓上意一點(除A,B外),PD⊥x軸于D,若
PQ
QD
,λ∈(-1,0)

(1)試求橢圓的標準方程;
(2)P在C處時,若∠QAB=2∠PAB,試求過Q、A、D三點的圓的方程;
(3)若直線QB與AP交于點H,問是否存在λ,使得線段OH的長為定值,若存在,求出λ的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•汕頭一模)如圖.已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的長軸為AB,過點B的直線l與x軸垂直,橢圓的離心率e=
3
2
,F(xiàn)1為橢圓的左焦點且
AF1
F1B
=1.
(I)求橢圓的標準方程;
(II)設(shè)P是橢圓上異于A、B的任意一點,PH⊥x軸,H為垂足,延長HP到點Q使得HP=PQ.連接AQ并延長交直線l于點M,N為MB的中點,判定直線QN與以AB為直徑的圓O的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽模擬)如圖,已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
3
2
,F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點,B為橢圓的上頂點且△BF1F2的周長為4+2
3

(1)求橢圓的方程;
(2)是否存在這樣的直線使得直線l與橢圓交于M,N兩點,且橢圓右焦點F2恰為△BMN的垂心?若存在,求出直線l的方程;若不存在,請說明由..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•崇明縣二模)如圖,已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0),M為橢圓上的一個動點,F(xiàn)1、F2分別為橢圓的左、右焦點,A、B分別為橢圓的一個長軸端點與短軸的端點.當(dāng)MF2⊥F1F2時,原點O到直線MF1的距離為
1
3
|OF1|.
(1)求a,b滿足的關(guān)系式;
(2)當(dāng)點M在橢圓上變化時,求證:∠F1MF2的最大值為
π
2
;
(3)設(shè)圓x2+y2=r2(0<r<b),G是圓上任意一點,過G作圓的切線交橢圓于Q1,Q2兩點,當(dāng)OQ1⊥OQ2時,求r的值.(用b表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
過點(1,
2
2
)
,離心率為
2
2
,左、右焦點分別為F1、F2.點P為直線l:x+y=2上且不在x軸上的任意一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D,O為坐標原點.設(shè)直線PF1、PF2的斜率分別為k1、k2
(Ⅰ)證明:
1
k1
-
3
k2
=2
;
(Ⅱ)問直線l上是否存在點P,使得直線OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD滿足kOA+kOB+kOC+kOD=0?若存在,求出所有滿足條件的點P的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案