已知函數(shù).
(1)若處取得極值,求的單調(diào)遞增區(qū)間;
(2)若在區(qū)間內(nèi)有極大值和極小值,求實(shí)數(shù)的取值范圍.
(1),;(2)實(shí)數(shù)的取值范圍是.

試題分析:(1)根據(jù)題意可得,又由的極值點(diǎn)可得,可得,從而,而的解為,因此可以得到的單調(diào)遞增區(qū)間為;(2)由可知,在區(qū)間內(nèi)有極大值和極小值等價(jià)于二次函數(shù)上有不等零點(diǎn),
因此可以大致畫出的示意圖,從而可以列出關(guān)于的不等式組:,即可解得實(shí)數(shù)的取值范圍是.
試題解析:(1)∵,∴
處取得極值,∴,即
,令,則,∴,
∴函數(shù)的單調(diào)遞增區(qū)間為,;
(2) ∵內(nèi)有極大值和極小值 ∴內(nèi)有兩不等零點(diǎn),
而二次函數(shù),其對稱軸,可結(jié)合題意畫出的大致示意圖:

,解得,∴實(shí)數(shù)的取值范圍是.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)為常數(shù))的圖像與軸交于點(diǎn),曲線在點(diǎn)處的切線斜率為-1.
(1)求的值及函數(shù)的極值;(2)證明:當(dāng)時(shí),;
(3)證明:對任意給定的正數(shù),總存在,使得當(dāng),恒有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)若是函數(shù)的極值點(diǎn),求曲線在點(diǎn)處的切線方程;
(2)若函數(shù)上為單調(diào)增函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù):f(x)=x3+ax2+bx+c,過曲線y=f(x)上的點(diǎn)P(1,f(1))的切線方程為y=3x+1
(1)y=f(x)在x=-2時(shí)有極值,求f(x)的表達(dá)式;
(2)函數(shù)y=f(x)在區(qū)間[-2,1]上單調(diào)遞增,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若關(guān)于的不等式的解集中的正整數(shù)解有且只有3個,則實(shí)數(shù)的取值范圍是     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

函數(shù).
(1)討論的單調(diào)性;
(2)設(shè),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知,則=             

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題


設(shè)曲線在點(diǎn)處的切線與垂直,則              .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求函數(shù)的導(dǎo)數(shù)。

查看答案和解析>>

同步練習(xí)冊答案