Processing math: 100%
15.如圖,在四棱錐A-BCED中,AD⊥底面BCED,BD⊥DE,∠DBC=∠BCE═60°,BD=2CE.
(1)若F是AD的中點(diǎn),求證:EF∥平面ABC;
(2)M、N是棱BC的兩個(gè)三等分點(diǎn),求證:EM⊥平面ADN.

分析 (1)取BD的中點(diǎn)G,連接EG,F(xiàn)G,證明平面EFG∥平面ABC,即可證明:EF∥平面ABC;
(2)M、N是棱BC的兩個(gè)三等分點(diǎn),證明EM⊥ND,AD⊥EM,即可證明:EM⊥平面ADN.

解答 證明:(1)取BD的中點(diǎn)G,連接EG,F(xiàn)G,
∵F是AD的中點(diǎn),
∴FG∥AB,
∵BD=2CE,∴BG=CE,
∵∠DBC=∠BCE,
∴E,G到直線BC的距離相等,則EG∥CB,
∵EG∩FG=G,
∴平面EFG∥平面ABC,
∵EF?平面EFG,
∴EF∥平面ABC;
(2)∵BD⊥DE,∠DBC=∠BCE═60°,BD=2CE,
∴BC=3CE,
∵M(jìn)、N是棱BC的兩個(gè)三等分點(diǎn),
∴MN=CE,BD=BN,
∵∠DBC=60°,
∴△BDN是正三角形,即∠BND=60°,
∵∠BCE=60°,∴CE∥ND,
△CEM中,CM=2CE,∠BCE=60°,
∴∠CEM=90°,
∴EM⊥CE,EM⊥ND,
∵AD⊥平面BCED,
∴AD⊥EM,
∵AD∩ND=D,
∴EM⊥平面ADN.

點(diǎn)評(píng) 本題考查面面平行、線面平行的判定,考查線面垂直的判定,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若關(guān)于x的方程x2-xlnx+2=k(x+2)在[12,+∞)上有兩解,則實(shí)數(shù)k的取值范圍為( �。�
A.(1,910+ln25]B.(1,+∞)C.(1,910+ln25D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在復(fù)平面內(nèi),復(fù)數(shù)z=2i1+i(i為虛數(shù)單位)對(duì)應(yīng)的點(diǎn)位于( �。�
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)f(x)=-x2-6x-3,g(x)=2x3+3x2-12x+9,m<-2,若?x1∈[m,-2),?x2∈(0,+∞),使得f(x1)=g(x2)成立,則m的最小值為( �。�
A.-5B.-4C.-25D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.如果實(shí)數(shù)x,y滿足約束條件{2x+y40xy10x1,則z=3x+2y的最大值為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)集合A={x∈R|x-1>0},B={x∈R|x<0},C={x∈R|x(x-2)>0},則“x∈A∪B“是“x∈C“的( �。�
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)M、N是直線x+y-2=0上的兩動(dòng)點(diǎn),且|MN|=2,則OMON的最小值為(  )
A.1B.2C.52D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若數(shù)列{an}滿足:只要ap=aq(p,q∈N*),必有ap+1=aq+1,那么就稱數(shù)列{an}具有相紙P,已知數(shù)列{an}具有性質(zhì)P,且a1=1,a2=2,a3=3,a5=2,a6+a7+a8=21,則a2017=15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)集合A={x|x2-3x<0},B={x||x|>2},則A∩B=( �。�
A.(2,3)B.(-2,3)C.(0,2)D.(-2,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案