【題目】如圖所示,在ABC中,a=b·cos C+c·cos B,其中a,b,c分別為角A,B,C的對邊,在四面體PABC中,S1,S2,S3,S分別表示PAB,PBC,PCA,ABC的面積,α,β,γ依次表示面PAB,面PBC,面PCA與底面ABC所成二面角的大。寫出對四面體性質的猜想,并證明你的結論

【答案】S=S1·cos α+S2·cos β+S3·cos γ

析】類比三角形中的結論,猜想在四面體中的結論S=S1·cos α+S2·cos β+S3·cos γ.

證明:如圖,點在底面的射影為點,過點作,交,連接,

就是平面PAB與底面ABC所成的二面角,則,

,

同理,,

S=S1·cos α+S2·cos β+S3·cos γ.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1 求函數(shù)的單調遞減區(qū)間;

2 時,的最小值是,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】市場上有一種新型的強力洗衣粉,特點是去污速度快,已知每投放個單位的洗衣粉液在一定量水的洗衣機中,它在水中釋放的濃度克/升隨著時間分鐘變化的函數(shù)關系式近似為,其中,若多次投放,則某一時刻水中的洗衣液濃度為每次投放的洗衣液在相應時刻所釋放的濃度之和,根據(jù)經(jīng)驗,當水中洗衣液的濃度不低于4克/升時,它才能起有效去污的作用.

1若只投放一次4個單位的洗衣液,則有效去污時間可能達幾分鐘?

2若先投放2個單位的洗衣液,6分鐘后投放個單位的洗衣液,要使接下來的4分鐘中能夠持續(xù)有效去污,試求的最小值精確到0.1,參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓的左、右焦點分別為、左準線和右準線分別與軸相交于、兩點,、恰好為線段的三等分點

(1)求橢圓的離心率;

(2)過點作直線與橢圓相交于、兩點,且滿足,當△的面積最大時為坐標原點),求橢圓的標準方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面為矩形,平面,的中點.

(1)證明://平面;

(2)設,三棱錐的體積,求到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】知函數(shù).

(1函數(shù)單調區(qū)間和極值;

(2證明:時,函數(shù)沒有零點(提示:).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】知函數(shù).

(1)判斷單調性;

(2)已不等式任意成立;函數(shù)兩個零點分別在區(qū)間,如果真,為假,求實數(shù)取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】知關于不等式解集為.

(1)個數(shù)中任取的一個數(shù),個數(shù)中任取的一個數(shù),求為空集的概率;

(2)若是從區(qū)間任取的一個數(shù),從區(qū)間任取的一個數(shù),求為空集的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為自然對數(shù)的底數(shù).

)求函數(shù)在區(qū)間上的最值;

)當時,設函數(shù)(其中為常數(shù))的3個極值點為,且,將這5個數(shù)按照從小到大的順序排列,并證明你的結論.

查看答案和解析>>

同步練習冊答案