某工廠三個(gè)車間共有工人1000人各車間男、女工人數(shù)如表:

已知在全廠工人中隨機(jī)抽取1名,抽到第二車間男工的概率是0.15.
(1)求x的值;
(2)現(xiàn)用分層抽樣的方法在第一、第二、第三車間共抽取60名工人參加座談分,問應(yīng)在第三車間抽取多少名?
(3)已知y≥185,z≥185,求第三車間中女工比男工少的概率.

(I);(II);(III).

解析試題分析:(I)總的人數(shù)乘以第二車間男工對(duì)應(yīng)的概率即可;(II)根據(jù)分層抽樣,確定第三車間人數(shù)占總?cè)藬?shù)的百分比,然后乘以60即可;(III)列舉出所有可能的結(jié)果,用女工比男工少的情況數(shù)除以總情況數(shù)即可.
試題解析:(I)由題意可知,解得.                     3分
(II)由題意可知第三車間共有工人數(shù)為名,
則設(shè)應(yīng)在第三車間抽取名工人,則,.          7分
(III)由題意可知,且,滿足條件的
組,                     8分
記“第三車間女工比男工少”為事件,即,上述組中,滿足
,共有組                     9分
                                                 11分
故第三車間中女工比男工少的概率為.                          12分
考點(diǎn):1、概率的應(yīng)用;2、分層抽樣;3、條件概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了了解某市工廠開展群眾體育活動(dòng)的情況,擬采用分層抽樣的方法從三個(gè)區(qū)中抽取6個(gè)工廠進(jìn)行調(diào)查.已知區(qū)中分別有27,18,9個(gè)工廠.
(Ⅰ)求從區(qū)中應(yīng)分別抽取的工廠個(gè)數(shù);
(Ⅱ)若從抽得的6個(gè)工廠中隨機(jī)地抽取2個(gè)進(jìn)行調(diào)查結(jié)果的對(duì)比,求這2個(gè)工廠中至少有1個(gè)來自區(qū)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

用分層抽樣方法從高中三個(gè)年級(jí)的相關(guān)人員中抽取若干人組成研究小組,有關(guān)數(shù)據(jù)見下表:(單位:人)

(Ⅰ)求,
(Ⅱ)若從高二、高三年級(jí)抽取的人中選人,求這2人都來自高二年級(jí)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某小組共有、、、五位同學(xué),他們的身高(單位:米)以及體重指
標(biāo)(單位:千克/米2)如下表所示:

 





身高





體重指標(biāo)





(1)從該小組身高低于的同學(xué)中任選人,求選到的人身高都在以下的概率;
(2)從該小組同學(xué)中任選人,求選到的人的身高都在以上且體重指標(biāo)都在中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某社區(qū)舉辦防控甲型H7N9流感知識(shí)有獎(jiǎng)問答比賽,甲、乙、丙三人同時(shí)回答一道衛(wèi)生知識(shí)題,三人回答正確與錯(cuò)誤互不影響。已知甲回答這題正確的概率是,甲、丙兩人都回答錯(cuò)誤的概率是,乙、丙兩人都回答正確的概率是.
(I)求乙、丙兩人各自回答這道題正確的概率;
(II)用表示回答該題正確的人數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)有關(guān)于x的一元二次方程
(1)若a是從0,1,2,3四個(gè)數(shù)中任取的一個(gè)數(shù),b是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率;
(2)若a是從區(qū)間[0,3]任取的一個(gè)數(shù),b是從區(qū)間[0,2]任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一個(gè)袋中裝有大小相同的球10個(gè),其中紅球8個(gè),黑球2個(gè),現(xiàn)從袋中有放回地取球,每次隨機(jī)取1個(gè). 求:
(Ⅰ)連續(xù)取兩次都是紅球的概率;
(Ⅱ)如果取出黑球,則取球終止,否則繼續(xù)取球,直到取出黑球,取球次數(shù)最多不超過4次,求取球次數(shù)的概率分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

其市有小型超市72個(gè),中型超市24個(gè),大型超市12個(gè),現(xiàn)采用分層抽樣方法抽取9個(gè)超市對(duì)其銷售商品質(zhì)量進(jìn)行調(diào)查.
(I)求應(yīng)從小型、中型、大型超市分別抽取的個(gè)數(shù);
(II)若從抽取的9個(gè)超市中隨機(jī)抽取3個(gè)做進(jìn)一步跟蹤分析,記隨機(jī)變量X為抽取的小型超市的個(gè)數(shù),求隨機(jī)變量X的分布列及數(shù)學(xué)期望E(X) .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了調(diào)查某大學(xué)學(xué)生在周日上網(wǎng)的時(shí)間,隨機(jī)對(duì)1OO名男生和100名女生進(jìn)行了不記 名的問卷調(diào)查.得到了如下的統(tǒng)計(jì)結(jié)果:
表1:男生上網(wǎng)時(shí)間與頻數(shù)分布表

表2:女生上網(wǎng)時(shí)間與頻數(shù)分布表

(I)若該大學(xué)共有女生750人,試估計(jì)其中上網(wǎng)時(shí)間不少于60分鐘的人數(shù);
(II)完成下面的2x2列聯(lián)表,并回答能否有90%的把握認(rèn)為“學(xué)生周日上網(wǎng)時(shí)間與性 別有關(guān)”?
表3:

查看答案和解析>>

同步練習(xí)冊(cè)答案