【題目】已知函數(shù)f(x)=4cosxsin(x+ )﹣1, (Ⅰ)求f(x)的單調(diào)遞增區(qū)間
(Ⅱ)若sin2x+af(x+ )+1>6cos4x對(duì)任意x∈(﹣ , )恒成立,求實(shí)數(shù)a的取值范圍.

【答案】解:(Ⅰ)由函數(shù)f(x)=4cosxsin(x+ )﹣1,

可得:f(x)=4cosx( sinx+ cosx)﹣1

= sin2x+2cos2x﹣1

= sin2x+cos2x

=2sin(2x+

(k∈Z),

解得:

所以:f(x)的單調(diào)增區(qū)間為

(Ⅱ)由題意:當(dāng) 時(shí),

原不等式等價(jià)于a2cos2x>6cos4x﹣sin2x﹣1,

恒成立

=

,當(dāng)x=0時(shí),cosx取得最大值,即cosx=1時(shí),那么g(x)也取得最大值為

因此,


【解析】(Ⅰ)先利用兩角和余差的基本公式和輔助角公式將函數(shù)化為y=Asin(ωx+φ)的形式,再將內(nèi)層函數(shù)看作整體,放到正弦函數(shù)的增區(qū)間上,解不等式得函數(shù)的單調(diào)遞增區(qū)間;

(Ⅱ)求出f(x+ )的值,帶到題設(shè)中去,化簡(jiǎn),求函數(shù)在x∈(﹣ , )的最值,即可恒成立,從而求實(shí)數(shù)a的取值范圍.

【考點(diǎn)精析】利用正弦函數(shù)的單調(diào)性和三角函數(shù)的最值對(duì)題目進(jìn)行判斷即可得到答案,需要熟知正弦函數(shù)的單調(diào)性:在上是增函數(shù);在上是減函數(shù);函數(shù),當(dāng)時(shí),取得最小值為;當(dāng)時(shí),取得最大值為,則,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義域是一切實(shí)數(shù)的函數(shù)y=f(x),其圖象是連續(xù)不斷的,且存在常數(shù)λ(λ∈R)使得f(x+λ)+λf(x)=0對(duì)任意實(shí)數(shù)x都成立,則稱(chēng)f(x)實(shí)數(shù)一個(gè)“λ一半隨函數(shù)”,有下列關(guān)于“λ一半隨函數(shù)”的結(jié)論:①若f(x)為“1一半隨函數(shù)”,則f(0)=f(2);②存在a∈(1,+∞)使得f(x)=ax為一個(gè)“λ一半隨函數(shù);③“ 一半隨函數(shù)”至少有一個(gè)零點(diǎn);④f(x)=x2是一個(gè)“λ一班隨函數(shù)”;其中正確的結(jié)論的個(gè)數(shù)是(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系內(nèi),已知A(1,a),B(﹣5,﹣3),C(4,0);
(1)當(dāng)a∈( ,3)時(shí),求直線(xiàn)AC的傾斜角α的取值范圍;
(2)當(dāng)a=2時(shí),求△ABC的BC邊上的高AH所在直線(xiàn)方程l.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)社會(huì)調(diào)查機(jī)構(gòu)就某地居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫(huà)了樣本的頻率分布直方圖(如圖).為了分析居民的收入與年齡、學(xué)歷、職業(yè)等方面的關(guān)系,要從這10000人中再用分層抽樣方法抽出100人作進(jìn)一步調(diào)查,則在[2500,3000)(元)月收入段應(yīng)抽出人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】假設(shè)關(guān)于某設(shè)備的使用年限x(年)和所支出的維修費(fèi)用y(萬(wàn)元)有如下的統(tǒng)計(jì)資料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0


(1)畫(huà)出散點(diǎn)圖并判斷是否線(xiàn)性相關(guān);
(2)如果線(xiàn)性相關(guān),求線(xiàn)性回歸方程;
(3)估計(jì)使用年限為10年時(shí),維修費(fèi)用是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示,下列說(shuō)法正確的是(
A.函數(shù)f(x)的圖象關(guān)于直線(xiàn)x=﹣ 對(duì)稱(chēng)
B.函數(shù)f(x)的圖象關(guān)于點(diǎn)(﹣ ,0)對(duì)稱(chēng)
C.若方程f(x)=m在[﹣ ,0]上有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)m∈(﹣2,﹣ ]
D.將函數(shù)f(x)的圖象向左平移 個(gè)單位可得到一個(gè)偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= cos(2x﹣ ).
(1)若sinθ=﹣ ,θ∈( ,2π),求f(θ+ )的值;
(2)若x∈[ , ],求函數(shù)f(x)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C:x2+y2+2x+a=0上存在兩點(diǎn)關(guān)于直線(xiàn)l:mx+y+1=0對(duì)稱(chēng). (I)求m的值;
(Ⅱ)直線(xiàn)l與圓C交于A,B兩點(diǎn), =﹣3(O為坐標(biāo)原點(diǎn)),求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xoy中,A為以原點(diǎn)O為圓心的單位圓O與x正半軸的交點(diǎn),在圓心角為 的扇形AOB的弧AB上任取一點(diǎn) P,作 PN⊥OA于N,連結(jié)PO,記∠PON=θ.
(1)設(shè)△PON的面積為y,使y取得最大值時(shí)的點(diǎn)P記為E,點(diǎn)N記為F,求此時(shí) 的值;
(2)求k=a| || |+ (a∈R,E 是在(1)條件下的點(diǎn) E)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案