【題目】如圖是1,2兩組各7名同學(xué)體重(單位:kg)數(shù)據(jù)的莖葉圖.設(shè)1,2兩組數(shù)據(jù)的平均數(shù)依次為1和2,標(biāo)準(zhǔn)差依次為s1和s2,那么( )
(注:標(biāo)準(zhǔn)差,其中為x1,x2,…,xn的平均數(shù))
A.1>2,s1>s2
B.1>2,s1<s2
C.1<2,s1<s2
D.1<2,s1>s2
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著科學(xué)技術(shù)的飛速發(fā)展,手機(jī)的功能逐漸強(qiáng)大,很大程度上代替了電腦、電視.為了了解某高校學(xué)生平均每天使用手機(jī)的時間是否與性別有關(guān),某調(diào)查小組隨機(jī)抽取了名男生、名女生進(jìn)行為期一周的跟蹤調(diào)查,調(diào)查結(jié)果如表所示:
平均每天使用手機(jī)超過小時 | 平均每天使用手機(jī)不超過小時 | 合計 | |
男生 | |||
女生 | |||
合計 |
(1)能否在犯錯誤的概率不超過的前提下認(rèn)為學(xué)生使用手機(jī)的時間長短與性別有關(guān)?
(2)在這名女生中,調(diào)查小組發(fā)現(xiàn)共有人使用國產(chǎn)手機(jī),在這人中,平均每天使用手機(jī)不超過小時的共有人.從平均每天使用手機(jī)超過小時的女生中任意選取人,求這人中使用非國產(chǎn)手機(jī)的人數(shù)的分布列和數(shù)學(xué)期望.
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在上是增函數(shù),則的取值范圍是( 。
A. B. C. D.
【答案】C
【解析】
若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),則x2﹣ax+3a>0且f(2)>0,根據(jù)二次函數(shù)的單調(diào)性,我們可得到關(guān)于a的不等式,解不等式即可得到a的取值范圍.
若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),
則當(dāng)x∈[2,+∞)時,
x2﹣ax+3a>0且函數(shù)f(x)=x2﹣ax+3a為增函數(shù)
即,f(2)=4+a>0
解得﹣4<a≤4
故選:C.
【點(diǎn)睛】
本題考查的知識點(diǎn)是復(fù)合函數(shù)的單調(diào)性,二次函數(shù)的性質(zhì),對數(shù)函數(shù)的單調(diào)區(qū)間,其中根據(jù)復(fù)合函數(shù)的單調(diào)性,構(gòu)造關(guān)于a的不等式,是解答本題的關(guān)鍵.
【題型】單選題
【結(jié)束】
10
【題目】圓錐的高和底面半徑之比,且圓錐的體積,則圓錐的表面積為( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】恩格爾系數(shù)是食品支出總額占個人消費(fèi)支出總額的比重.恩格爾系數(shù)越小,即家庭的消費(fèi)支出中用于購買食物的支出所占比例越小,更多的消費(fèi)用于精神追求,標(biāo)志著家庭越富裕.恩格爾系數(shù)達(dá)59%以上為貧困,50~59%為溫飽,40~50%為小康,30~40%為富裕,低于30%為最富裕.下圖給出了1980—2017年我國城鎮(zhèn)居民和農(nóng)村居民家庭恩格爾系數(shù)的變化統(tǒng)計圖,對所列年份進(jìn)行分析,則下列結(jié)論正確的是( )
A.農(nóng)村和城鎮(zhèn)居民家庭消費(fèi)支出呈下降趨勢
B.農(nóng)村居民家庭比城鎮(zhèn)居民家庭用于購買食品的支出更多
C.1995年我國農(nóng)村居民初步達(dá)到小康標(biāo)準(zhǔn)
D.2015年城鎮(zhèn)和農(nóng)村居民食品支出占個人消費(fèi)支出總額之比大于30.6%
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐中,,且、、兩兩垂直,是三棱錐外接球面上一動點(diǎn),則到平面的距離的最大值是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓O:x2+y2=8內(nèi)有一點(diǎn)P(﹣1,2),AB為過點(diǎn)P且傾斜角為α的弦,
(1)當(dāng)α=135°時,求AB的長;
(2)當(dāng)弦AB被點(diǎn)P平分時,寫出直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若對任意的正整數(shù),總存在正整數(shù),使得數(shù)列的前項(xiàng)和,則稱是“回歸數(shù)列”.
()①前項(xiàng)和為的數(shù)列是否是“回歸數(shù)列”?并請說明理由.②通項(xiàng)公式為的數(shù)列是否是“回歸數(shù)列”?并請說明理由;
()設(shè)是等差數(shù)列,首項(xiàng),公差,若是“回歸數(shù)列”,求的值.
()是否對任意的等差數(shù)列,總存在兩個“回歸數(shù)列”和,使得成立,請給出你的結(jié)論,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:極坐標(biāo)與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).
(1)求曲線的普通方程;
(2)經(jīng)過點(diǎn)(平面直角坐標(biāo)系中點(diǎn))作直線交曲線于, 兩點(diǎn),若恰好為線段的三等分點(diǎn),求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017·衢州調(diào)研)已知四棱錐P-ABCD的底面ABCD是菱形,∠ADC=120°,AD的中點(diǎn)M是頂點(diǎn)P在底面ABCD的射影,N是PC的中點(diǎn).
(1)求證:平面MPB⊥平面PBC;
(2)若MP=MC,求直線BN與平面PMC所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com