(2012•甘谷縣模擬)(文)數(shù)列{an}滿足an+1=
n+2
n
an
(n∈N*),且a1=1.(1)求通項(xiàng)an;(2)記bn=
1
an
,數(shù)列{bn}的前n項(xiàng)和為Sn,求Sn
分析:(1)由∴
an+1
an
=
n+2
n
,利用疊乘法可求數(shù)列的通項(xiàng)
(2)由bn=
1
an
=
2
n(n+1)
=2(
1
n
-
1
n+1
)
,利用裂項(xiàng)相消法可求數(shù)列的和
解答:解(1)∵an+1=
n+2
n
an
,
an+1
an
=
n+2
n

∵a1=1
a2
a1
=
3
1
,
a3
a2
=
4
2
an
an-1
=
n+1
n-1

以上n-1個(gè)式子相乘可得,
a2
a1
a3
a2
an
an-1
=
3
1
×
4
2
×
5
3
n-1
n-3
×
n
n-2
×
n+1
n-1

an
a1
=
n(n+1)
1×2

∴an=
n(n+1)
2

(2)∵bn=
1
an
=
2
n(n+1)
=2(
1
n
-
1
n+1
)

Sn=2(1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
)=2(1-
1
n+1
)=
2n
n+1
點(diǎn)評(píng):本題主要考查了數(shù)列的通項(xiàng)公式求解中的疊乘法及數(shù)列求和的裂項(xiàng)相消法的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•甘谷縣模擬)已知數(shù)列{an}為等差數(shù)列,若a2=3,a1+a6=12,則a7+a8+a9=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•甘谷縣模擬)(理)已知函數(shù)f(x)=
1
1-x
+
2
x2-1
,0<x<1
x+a,x≥1
在(0,+∞)上連續(xù),則實(shí)數(shù)a的值為
-
3
2
-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•甘谷縣模擬)(文)紅隊(duì)隊(duì)員甲、乙、丙與藍(lán)隊(duì)隊(duì)員A、B、C進(jìn)行圍棋比賽,甲對(duì)A,乙對(duì)B,丙對(duì)C各一盤,已知甲勝A,乙勝B,丙勝C的概率分別為0.6,0.5,0.5,假設(shè)各盤比賽結(jié)果相互獨(dú)立.求紅隊(duì)至少兩名隊(duì)員獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•甘谷縣模擬)(理) 設(shè)數(shù)列{an}為正項(xiàng)數(shù)列,其前n項(xiàng)和為Sn,且有an,sn
a
2
n
成等差數(shù)列.(1)求通項(xiàng)an;(2)設(shè)f(n)=
sn
(n+50)sn+1
求f(n)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案