【題目】某射擊運(yùn)動(dòng)員在一次射擊中射中10環(huán)、9環(huán)、8環(huán)、7環(huán)、7環(huán)以下的概率分別為0.24,0.28,0.19,0.16,0.13.計(jì)算這名射擊運(yùn)動(dòng)員在一次射擊中:
(1)射中10環(huán)或9環(huán)的概率;
(2)射中8環(huán)以下的概率.
【答案】(1)0.52(2)0.29
【解析】
(1)因?yàn)樯渲胁煌沫h(huán)數(shù)是互斥事件,則射中10環(huán)或9環(huán)的概率為射中10環(huán)的概率與射中9環(huán)的概率的和;
(2)射中8環(huán)以下的包括射中7環(huán)及7環(huán)以下,即可求得概率
因?yàn)槭录吧渲?/span>10環(huán)”“射中9環(huán)”“射中8環(huán)”“射中7環(huán)”“射中7環(huán)以下”是彼此互斥的,所以可運(yùn)用互斥事件的概率加法公式求解,
記“射中10環(huán)”“射中9環(huán)”“射中8環(huán)”“射中7環(huán)”“射中7環(huán)以下”分別為事件A,B,C,D,E,則:
(1),所以這名射擊運(yùn)動(dòng)員在一次射擊中射中10環(huán)或9環(huán)的概率為0.52
(2),所以這名射擊運(yùn)動(dòng)員在一次射擊中射中8環(huán)以下的概率為0.29
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,動(dòng)點(diǎn)P,Q從點(diǎn)出發(fā)在單位圓上運(yùn)動(dòng),點(diǎn)P按逆時(shí)針方向每秒鐘轉(zhuǎn)弧度,點(diǎn)Q按順時(shí)針方向每秒鐘轉(zhuǎn)弧度,則P,Q兩點(diǎn)在第2019次相遇時(shí),點(diǎn)P的坐標(biāo)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)甲,乙兩個(gè)研發(fā)小組,他們研發(fā)新產(chǎn)品成功的概率分別為和,現(xiàn)安排甲組研發(fā)新產(chǎn)品,乙組研發(fā)新產(chǎn)品.設(shè)甲,乙兩組的研發(fā)是相互獨(dú)立的.
(1)求至少有一種新產(chǎn)品研發(fā)成功的概率;
(2)若新產(chǎn)品研發(fā)成功,預(yù)計(jì)企業(yè)可獲得萬(wàn)元,若新產(chǎn)品研發(fā)成功,預(yù)計(jì)企業(yè)可獲得利潤(rùn)萬(wàn)元,求該企業(yè)可獲得利潤(rùn)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】判斷下列命題的真假.
(1)若直線上有無(wú)數(shù)個(gè)點(diǎn)不在平面內(nèi),則;
(2)若直線與平面平行,則與平面內(nèi)的任意一條直線都平行;
(3)若直線與平面平行,則與平面內(nèi)的任意一條直線都沒有公共點(diǎn);
(4)如果兩條平行直線中的一條與一個(gè)平面平行,則另一條直線也與這個(gè)平面平行.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】日本數(shù)學(xué)家角谷靜夫發(fā)現(xiàn)的“ 猜想”是指:任取一個(gè)自然數(shù),如果它是偶數(shù),我們就把它除以,如果它是奇數(shù)我們就把它乘再加上,在這樣一個(gè)變換下,我們就得到了一個(gè)新的自然數(shù)。如果反復(fù)使用這個(gè)變換,我們就會(huì)得到一串自然數(shù),猜想就是:反復(fù)進(jìn)行上述運(yùn)算后,最后結(jié)果為,現(xiàn)根據(jù)此猜想設(shè)計(jì)一個(gè)程序框圖如圖所示,執(zhí)行該程序框圖輸入的,則輸出值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的圖象在處的切線方程;
(2)若函數(shù)在定義域上為單調(diào)增函數(shù)。
①求的最大整數(shù)值;
②證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)對(duì)現(xiàn)有設(shè)備進(jìn)行了改造,為了了解設(shè)備改造后的效果,現(xiàn)從設(shè)備改造前后生產(chǎn)的大量產(chǎn)品中各抽取了100件產(chǎn)品作為樣本,檢測(cè)其質(zhì)量指標(biāo)值,若質(zhì)量指標(biāo)值在內(nèi),則該產(chǎn)品視為合格品,否則視為不合格品.圖1是設(shè)備改造前的樣本的頻率分布直方圖,表1是設(shè)備改造后的樣本的頻數(shù)分布表.
(1)完成列聯(lián)表,并判斷是否有99%的把握認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與設(shè)備改造有關(guān):
設(shè)備改造前 | 設(shè)備改造后 | 合計(jì) | |
合格品 | |||
不合格品 | |||
合計(jì) |
(2)根據(jù)圖1和表1提供的數(shù)據(jù),試從產(chǎn)品合格率的角度對(duì)改造前后設(shè)備的優(yōu)劣進(jìn)行比較;
(3)企業(yè)將不合格品全部銷毀后,根據(jù)客戶需求對(duì)合格品進(jìn)行等級(jí)細(xì)分,質(zhì)量指標(biāo)值落在內(nèi)的定為一等品,每件售價(jià)180元;質(zhì)量指標(biāo)值落在或內(nèi)的定為二等品,每件售價(jià)150元;其他的合格品定為三等品,每件售價(jià)120元.根據(jù)頻數(shù)分布表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有合格產(chǎn)品中抽到一件相應(yīng)等級(jí)產(chǎn)品的概率.現(xiàn)有一名顧客隨機(jī)購(gòu)買兩件產(chǎn)品,設(shè)其支付的費(fèi)用為(單位:元),求的分布列和數(shù)學(xué)期望.
附:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某旅游景點(diǎn)有50輛自行車供游客租賃使用,管理這些自行車的費(fèi)用是每日115元。根據(jù)經(jīng)驗(yàn),若每輛自行車的日租金不超過(guò)6元,則自行車可以全部租出;若超過(guò)6元,則每提高1元,租不出去的自行車就增加3輛.規(guī)定:每輛自行車的日租金不超過(guò)20元,每輛自行車的日租金元只取整數(shù),并要求出租所有自行車一日的總收入必須超過(guò)一日的管理費(fèi)用,用表示出租所有自行車的日凈收入(即一日中出租所以自行車的總收入減去管理費(fèi)用后的所得).
(1)求函數(shù)的解析式及定義域;
(2)試問日凈收入最多時(shí)每輛自行車的日租金應(yīng)定為多少元?日凈收入最多為多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com