已知兩條直線x+a2y+6=0和(a-2)x+3ay+2a=0互相平行,則a等于( 。
A、0或3或-1B、0或3C、3或-1D、0或-1
分析:利用兩直線平行的充要條件進(jìn)行求解,注意不要漏解.
解答:解:∵兩條直線x+a2y+6=0和(a-2)x+3ay+2a=0互相平行,
1
a-2
=
a2
3a
-6
-2a
,或k1=-
1
a2
和k2=-
a-2
3a
同時(shí)不存在,
解得a=-1,或a=0,且a≠3.
故選D.
點(diǎn)評(píng):本題考查兩條直線平行的應(yīng)用,是基礎(chǔ)題,解題時(shí)要易錯(cuò)點(diǎn)是產(chǎn)生增根或丟解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)P(a,b)作兩條直線l1,l2,斜率分別為1,-1,已知l1與圓O1:(x+2)2+(y-2)2=2交于不同的兩點(diǎn)A,B,l2與圓O2:(x-3)2+(y-4)2=2交于不同的兩點(diǎn)C,D,且|AB|=|CD|.
(Ⅰ)求:a,b所滿足的約束條件;
(Ⅱ)求:
a2-b2a2+b2
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下四個(gè)命題:
①工廠制造的某機(jī)械零件尺寸ξ~N(4,
1
9
),在一次正常的試驗(yàn)中,取1000個(gè)零件時(shí),不屬于區(qū)間(3,5)這個(gè)尺寸范圍的零件大約有3個(gè).
②拋擲n次硬幣,記不連續(xù)出現(xiàn)兩次正面向上的概率為Pn,則
lim
n→∞
Pn=0
③若直線ax+by-3a=0與雙曲線
x2
9
-
y2
4
=1有且只有一個(gè)公共點(diǎn),則這樣的直線有2條.
④已知函數(shù)f(x)=x+
1
x
+a2,g(x)=x3-a3+2a+1,若存在x1,x2∈[
1
a
,a](a>1),使得|f(x1)-g(x2)|≤9,則a的取值范圍是(1,4].
其中正確的命題是
①②④
①②④
(寫出所有正確的命題序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知橢圓
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
及兩條直線l1:x=-
a
2
 
c
,l2:x=
a
2
 
c
,其中c=
a
2
 
-
b
2
 
,且l1,l2分別交x軸于C、D兩點(diǎn).從l1上一點(diǎn)A發(fā)出一條光線經(jīng)過(guò)橢圓的左焦點(diǎn)F被石軸反射后與l2交于點(diǎn)B.若AF⊥BF,且∠ABD=75°,則橢圓的離心率等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓m:
x2
a2
+
y2
b2
=1(a>b>0)
與雙曲線n:
x2
4
-
y2
5
=1
有兩個(gè)公共點(diǎn),且橢圓m與雙曲線n的離心率之和為2.
(1)求橢圓m的方程;
(2)過(guò)橢圓m上的動(dòng)點(diǎn)P作互相垂直的兩條直線l1,l2,l1與圓O:x2+y2=a2+b2相交于點(diǎn)A,C,l2與圓x∈[2,6]相交于點(diǎn)B,D,求四邊形ABCD的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年廣東省深圳中學(xué)高三5月考前演練數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知橢圓與雙曲線有兩個(gè)公共點(diǎn),且橢圓m與雙曲線n的離心率之和為2.
(1)求橢圓m的方程;
(2)過(guò)橢圓m上的動(dòng)點(diǎn)P作互相垂直的兩條直線l1,l2,l1與圓O:x2+y2=a2+b2相交于點(diǎn)A,C,l2與圓x∈[2,6]相交于點(diǎn)B,D,求四邊形ABCD的面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案