已知點(diǎn)是雙曲線右支上一點(diǎn),是雙曲線的左焦點(diǎn),且雙曲線的一條漸近線恰是線段的中垂線,則該雙曲線的離心率是(      )
A.B.C.D.
D

試題分析:設(shè)直線:求直線與漸近線的交點(diǎn),解得:
的中點(diǎn),利用中點(diǎn)坐標(biāo)公式,得,在雙曲線上,所以代入雙曲線方程得: ,整理得,解得.故選D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線的方程為,過拋物線上一點(diǎn)()作斜率為的兩條直線分別交拋物線兩點(diǎn)(三點(diǎn)互不相同),且滿足).
(1)求拋物線的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;
(2)設(shè)直線上一點(diǎn),滿足,證明線段的中點(diǎn)在軸上;
(3)當(dāng)=1時(shí),若點(diǎn)的坐標(biāo)為,求為鈍角時(shí)點(diǎn)的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓,左、右兩個(gè)焦點(diǎn)分別為、,上頂點(diǎn),為正三角形且周長為6,直線與橢圓相交于兩點(diǎn).
(1)求橢圓的方程;
(2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),對稱軸為軸,焦點(diǎn)為,拋物線上一點(diǎn)的橫坐標(biāo)為2,且.
(1)求拋物線的方程;
(2)過點(diǎn)作直線交拋物線于,兩點(diǎn),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知點(diǎn)是動點(diǎn),且的三邊所在直線的斜率滿足
(1)求點(diǎn)的軌跡的方程;
(2)若是軌跡上異于點(diǎn)的一個(gè)點(diǎn),且,直線交于點(diǎn),問:是否存在點(diǎn),使得的面積滿足?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓經(jīng)過如下五個(gè)點(diǎn)中的三個(gè)點(diǎn):,,.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)點(diǎn)為橢圓的左頂點(diǎn),為橢圓上不同于點(diǎn)的兩點(diǎn),若原點(diǎn)在的外部,且為直角三角形,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線和⊙,過拋物線上一點(diǎn)作兩條直線與⊙相切于、兩點(diǎn),分別交拋物線為E、F兩點(diǎn),圓心點(diǎn)到拋物線準(zhǔn)線的距離為

(1)求拋物線的方程;
(2)當(dāng)的角平分線垂直軸時(shí),求直線的斜率;
(3)若直線軸上的截距為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若點(diǎn)P到點(diǎn)的距離與它到直線y+3=0的距離相等,則P的軌跡方程為 (  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線的一個(gè)焦點(diǎn)坐標(biāo)為,則雙曲線的漸近線方程為(    )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案