已知點(diǎn)
是雙曲線
右支上一點(diǎn),
是雙曲線的左焦點(diǎn),且雙曲線的一條漸近線恰是線段
的中垂線,則該雙曲線的離心率是( )
試題分析:設(shè)直線
:
求直線
與漸近線的交點(diǎn)
,
解得:
是
的中點(diǎn),利用中點(diǎn)坐標(biāo)公式,得
,在雙曲線上,所以代入雙曲線方程得:
,整理得
,解得
.故選D.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
拋物線
的方程為
,過拋物線
上一點(diǎn)
(
)作斜率為
的兩條直線分別交拋物線
于
兩點(diǎn)(
三點(diǎn)互不相同),且滿足
(
且
).
(1)求拋物線
的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;
(2)設(shè)直線
上一點(diǎn)
,滿足
,證明線段
的中點(diǎn)在
軸上;
(3)當(dāng)
=1時(shí),若點(diǎn)
的坐標(biāo)為
,求
為鈍角時(shí)點(diǎn)
的縱坐標(biāo)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
,左、右兩個(gè)焦點(diǎn)分別為
、
,上頂點(diǎn)
,
為正三角形且周長為6,直線
與橢圓
相交于
兩點(diǎn).
(1)求橢圓
的方程;
(2)求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知拋物線
的頂點(diǎn)在坐標(biāo)原點(diǎn)
,對稱軸為
軸,焦點(diǎn)為
,拋物線上一點(diǎn)
的橫坐標(biāo)為2,且
.
(1)求拋物線的方程;
(2)過點(diǎn)
作直線
交拋物線于
,
兩點(diǎn),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在平面直角坐標(biāo)系
中,已知點(diǎn)
,
是動點(diǎn),且
的三邊所在直線的斜率滿足
.
(1)求點(diǎn)
的軌跡
的方程;
(2)若
是軌跡
上異于點(diǎn)
的一個(gè)點(diǎn),且
,直線
與
交于點(diǎn)
,問:是否存在點(diǎn)
,使得
和
的面積滿足
?若存在,求出點(diǎn)
的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
:
經(jīng)過如下五個(gè)點(diǎn)中的三個(gè)點(diǎn):
,
,
,
,
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設(shè)點(diǎn)
為橢圓
的左頂點(diǎn),
為橢圓
上不同于點(diǎn)
的兩點(diǎn),若原點(diǎn)在
的外部,且
為直角三角形,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,已知拋物線
:
和⊙
:
,過拋物線
上一點(diǎn)
作兩條直線與⊙
相切于
、
兩點(diǎn),分別交拋物線為E、F兩點(diǎn),圓心點(diǎn)
到拋物線準(zhǔn)線的距離為
.
(1)求拋物線
的方程;
(2)當(dāng)
的角平分線垂直
軸時(shí),求直線
的斜率;
(3)若直線
在
軸上的截距為
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若點(diǎn)P到點(diǎn)
的距離與它到直線y+3=0的距離相等,則P的軌跡方程為 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
雙曲線
的一個(gè)焦點(diǎn)坐標(biāo)為
,則雙曲線的漸近線方程為( )
查看答案和解析>>