【題目】如圖,平面平面,,四邊形為平行四邊形,,為線段的中點(diǎn),點(diǎn)滿足.
(Ⅰ)求證:直線平面;
(Ⅱ)求證:平面平面;
(Ⅲ)若平面平面,求直線與平面所成角的正弦值.
【答案】(1)見證明;(2)見證明; (3)
【解析】
(Ⅰ)連接,交于點(diǎn),利用平幾知識(shí)得線線平行,再根據(jù)線面平行判定定理得結(jié)論,(Ⅱ)建立空間直角坐標(biāo)系,利用向量垂直進(jìn)行論證線線垂直,再根據(jù)線面垂直判定定理以及面面垂直垂直判定定理得結(jié)果,(Ⅲ)建立空間直角坐標(biāo)系,根據(jù)面面垂直得兩平面法向量垂直,進(jìn)而得P點(diǎn)坐標(biāo),最后利用空間向量數(shù)量積求線面角.
(Ⅰ)證明:連接,交于點(diǎn),連接
在平行四邊形中,因?yàn)?/span>,所以,
又因?yàn)?/span>,即,
所以,
又因?yàn)?/span>平面,平面,所以直線平面.
(Ⅱ)證明:因?yàn)?/span>,為線段的中點(diǎn),所以,
又因?yàn)槠矫?/span>平面于,平面所以平面
在平行四邊形中,因?yàn)?/span>,所以
以為原點(diǎn),分別以所在直線為軸,軸,建立空間直角坐標(biāo)系,
則
因?yàn)?/span>平面所以設(shè),
則
所以
所以,又因?yàn)?/span>
所以平面,又因?yàn)?/span>平面
所以平面平面.
(Ⅲ)解:因?yàn)?/span>
設(shè)為平面的一個(gè)法向量
則不妨設(shè)
因?yàn)?/span>
設(shè)為平面的一個(gè)法向量
則不妨設(shè)
因?yàn)槠矫?/span>平面,所以,所以
因?yàn)?/span>
所以
所以,
所以
所以直線與平面所成角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,多面體ABCDEF中,已知平面ABCD是邊長(zhǎng)為3的正方形,,,EF到平面ABCD的距離為2,則該多面體的體積V為( )
A.B.5C.6D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中,四邊形是菱形,,四邊形是直角梯形,,,.
(Ⅰ)證明:平面.
(Ⅱ)若平面平面,為的中點(diǎn),求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某項(xiàng)競(jìng)賽分為初賽、復(fù)賽、決賽三個(gè)階段進(jìn)行,每個(gè)階段選手要回答一個(gè)問題.規(guī)定正確回答問題者進(jìn)入下一階段競(jìng)賽,否則即遭淘汰.已知某選手通過初賽、復(fù)賽、決賽的概率分別是且各階段通過與否相互獨(dú)立.
(1)求該選手在復(fù)賽階段被淘汰的概率;
(2)設(shè)該選手在競(jìng)賽中回答問題的個(gè)數(shù)為ξ,求ξ的分布列與均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將個(gè)編號(hào)為、、、的不同小球全部放入個(gè)編號(hào)為、、、的個(gè)不同盒子中.求:
(1)每個(gè)盒至少一個(gè)球,有多少種不同的放法?
(2)恰好有一個(gè)空盒,有多少種不同的放法?
(3)每盒放一個(gè)球,并且恰好有一個(gè)球的編號(hào)與盒子的編號(hào)相同,有多少種不同的放法?
(4)把已知中個(gè)不同的小球換成四個(gè)完全相同的小球(無(wú)編號(hào)),其余條件不變,恰有一個(gè)空盒,有多少種不同的放法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐的底面是菱形,底面,分別是的中點(diǎn),,,.
(I)證明:;
(II)求直線與平面所成角的正弦值;
(III)在邊上是否存在點(diǎn),使與所成角的余弦值為,若存在,確定點(diǎn)位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有下列四個(gè)命題:
①若p是q的充分不必要條件,則¬p是¬q的必要不充分條件;
②若命題p:x≥0,x2+1>0,則¬p:x0<0,x02+1≤0;
③在△ABC中,A>B是sinA>sinB的充要條件;
④命題:當(dāng)1<t<4時(shí)方程1表示焦點(diǎn)在x軸上的橢圓,為真命題.
其中真命題的序號(hào)是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題函數(shù)在上單調(diào)遞增;命題函數(shù)至少有1個(gè)零點(diǎn).
(1)若為假,求實(shí)數(shù)的取值范圍;
(2)若為假,為真,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)若,求函數(shù)在上的零點(diǎn)個(gè)數(shù)(為自然對(duì)數(shù)的底數(shù));
(Ⅱ)若恰有一個(gè)零點(diǎn),求的取值集合;
(Ⅲ)若有兩零點(diǎn),求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com